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Abstract: 
Terrestrial ecosystem and carbon cycle feedbacks will significantly impact future climate, 
but their responses are highly uncertain.  Models and tipping point analyses suggest the 
tropics and Arctic/Boreal zone carbon-climate feedbacks could be disproportionately large.  
In situ observations in those regions are sparse, resulting in high uncertainties in carbon 
fluxes and fluxes. Key parameters controlling ecosystem carbon responses, such as plant 
traits, are also sparsely observed in the tropics, with the most diverse biome on the planet 
treated as a single type in models.  We analyzed the spatial distribution of in situ data for 
carbon fluxes, stocks and plant traits globally and also evaluated the potential of remote 
sensing to observe these quantities.  New satellite data products go beyond indices of 
greeness and can address spatial sampling gaps for specific ecosystem properties and 
parameters.  Because environmental conditions and access limit in situ observations in 
tropical and Arctic/Boreal environments, use of space-based techniques can reduce 
sampling bias and uncertainty about tipping point feedbacks to climate.  In order to reliably 
detect change, and develop the understanding of ecosystems needed for prediction, 
significantly more data are required in critical regions.  This need can best be met with a 
strategic combination of remote and in situ data, with satellite observations providing the 
dense sampling in space and time required to characterize the heterogeneity of ecosystem 
structure and function. 
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Introduction: 
Feedbacks from the global carbon cycle contribute substantially to uncertainty about 
future climates.  Twenty years ago, Schimel (1995) summed it up, “Lack of knowledge 
about positive and negative feedbacks from the biosphere is a major limiting factor to 
credible simulations of future atmospheric CO2 concentrations”. Despite decades of 
research since then, and very substantial increases inknowledge, the statement remains 
true today.   Ecosystems take up a significant fraction of carbon released to the atmosphere 
from fossil fuel burning and deforestation, but if this subsidy declines, the rate of increase 
in atmospheric CO2 accumulation will sharply increase for any given emission scenario 
(IPCC 2013).  As a result, the importance and complexity of the world’s terrestrial 
ecosystems have come into sharp focus over the past few decades.   
 
Despite the significance of terrestrial carbon storage in the climate system, global 
ecosystem models persistently diverge on even fundamental predictions of the sign and 
magnitude of feedbacks (Piao et al 2013, Hoffman et al 2014, Friend et al 2013), 
contributing substantial uncertainty to the overall accuracy of Earth system prediction 
(Bodman et al 2013).  Gaps in theory contribute to the failure of models (Wieder et al 
2013), but a lack of critical observations slows to the pace of development of theory, and its 
implementation into models (Keller et al 2008).  In one recent analysis of observing needs 
for the carbon cycle, the current state was characterized as a “sparse, exploratory 
framework” and the need as being a “dense, robust, and sustained system” (Ciais et al 
2014).  In this paper, we analyze the current state of observations for several critical 
terrestrial ecosystem variables relative to their known patterns, identify systematic issues 
with the current research efforts and suggest potential solutions.  For a comprehensive 
review of atmospheric, oceanic and human system observing needs, see Ciais et al (2014). 
 
Ecosystem observations provide knowledge about patterns of productivity, species 
distributions and other key characteristics and how they are changing.  These patterns 
form an important resource for the development and benchmarking of predictive models, 
in concert with experiments and process studies.  Predicting current patterns is both a 
crucial test of model skill, and a necessary initial condition for forecasts (Luo et al 2012).  
Global models and data syntheses have been assembled by international collaboration to 
meet these requirements, and to provide a best estimate of current patterns (Fisher et al 
2014).   Here we analyze the state of observations of three types of terrestrial ecosystem 
data, all central to model development, analysis and evaluation.  We focus on carbon fluxes-
-net ecosystem exchange (NEE) and gross primary productivity (GPP), aboveground 
biomass and plant traits, three data sets covering carbon fluxes, carbon stocks and planf 
functional diversity.   
 
Flux data represent our best knowledge of the quantity that affects the atmosphere 
directly, and are critical for inferring flux sensitivity to light, water, temperature, nutrients 
and other factors.  Biomass, and related ecosystem structural information, is also critical, 
and integrates information on the growth environment, disturbance regimes and resulting 
age structures. In ecosystem models, plant traits define some of the most variable, 
important and poorly constrained model parameters, governing photosynthesis and 
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carbon uptake, resource use efficiency (light, water, nutrients), allocation to tissues with 
different lifetimes and subsequent heterotrophic metabolism. 
 
All three of these types of observations are represented by large global databases widely 
used by ecosystem modelers and Earth scientists.  While there are many other data types 
for global ecology, these three are represented by large and accessible global data bases, 
are the focus of substantial and important literature, and represent many of the problems, 
opportunities and issues that apply to other, less well-developed observation types.  We 
discuss the current state of these data types, the role that remote observations can play and 
the requirements for sustained observation to detect and understand change, 
 
Carbon cycle tipping points 
The terrestrial carbon cycle will play a significant role in future climate change 
(Friedlingstein et al 2006).  Models of the climate system show large feedbacks from 
terrestrial ecosystems, including simulated negative feedbacks resulting from increased 
uptake as northern ecosystems become less temperature limited, and positive feedbacks 
from tropical dieback (Fung et al 2005).  Simulated net positive feedbacks from terrestrial 
ecosystems can cause atmospheric CO2 concentrations to be as much as 100 ppmv higher 
than simulations with no feedbacks for a specified fossil emission level, with accompanying 
climate effects.  However, models disagree wildly about the magnitude of these feedbacks, 
partly as a result of data gaps described above (Pavlick et al 2013).   
 
Lenton et al (2007) analyzed potential “tipping elements” in the Earth system, described as 
regions where “a small change in forcing triggers a strongly nonlinear response in the 
internal dynamics of part of the climate system.  Figure 1 shows Lenton et al’s terrestrial 
carbon tipping point regions, called tipping elements, superimposed on a map of terrestrial 
carbon storage.  Specifically, they identified the Arctic-Boreal Zone (ABZ) as a region where 
changes to climate could trigger rapid changes to ecosystem carbon storage, and where, if 
respiration or combustion were to increasingly dominate over GPP, the massive reserves of 
carbon stored there (Figure 2) could cause rapid increases in CO2 and temperature.  Lenton 
et al also identified the tropics as a tipping element where either reductions in GPP or 
increases in forest dieback as a result of warmer, drier climates could lead to release of 
biomass carbon.  This release can be rapid, since wood, the main storage component, can 
be quickly oxidized to CO2 if fires increase (Schimel and Baker 2005).  
 
We evaluate data sets that contribute to basic understanding of tipping elements, and aid in 
monitoring ongoing change through changes to fluxes, biomass carbon storage or plant 
diversity and functional properties.  If the ABZ and the tropics are indeed the location of 
climate tipping elements, then theory suggests that early detection of change requires 
dense observations in time and space (Scheffer et al 2012).  In situ observations generally 
provide the most direct measurements of process and mechanism, but are challenged to 
achieve the density, coverage, and longevity to detect and attribute change.  In this paper, 
we will evaluate the current distribution of three key types of ecosystem data, each 
represented by a major international database, and the potential of new remote sensing 
techniques to address sampling issues for these variables.  There are many other 
considerations in using remote observations, including the relationship between the 
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satellite observable and the property in question, calibration, validation and 
standardization of data products and the length of time series required.  Although we touch 
on many of these issues, we focus on the spatial characteristics of in situ and space-based 
observations relative to the Lenton et al (2007) geography.  Below, we evaluate each data 
type and the potential to complement in situ with remote observations. 
 
Available and required global observations 
Carbon stocks and fluxes: Measurements of carbon fluxes are a foundation for 
understanding ecosystem carbon balance.  Eddy covariance flux measurements are widely 
used to determine simulated gross primary productivity and net ecosystem exchange.  An 
effective global community of researchers has evolved and provides increasingly critical 
flux data collection, evaluation of data quality and analyses.  With more than 500 sites 
distributed worldwide, FLUXNET provides worldwide sampling of ecosystems and is 
widely used in model development and evaluation (Bonan et al 2011).  Figure 2 shows the 
distribution of FLUXNET sites as a function of climate (temperature and precipitation) and 
biome type.  There are now sites spanning the climate range (key drivers for carbon 
cycling) and covering most biome types. This broad coverage permits the development of 
empirical models, and is central in developing process model parameterizations (Beer et al 
2011, Jung et al 2011).  Figure 3 shows current estimates of the global distribution of GPP 
and total carbon storage (soils plus vegetation) from a recent multi-model ensemble (Piao 
et al 2013).   
 
Figure 3 also presents a histogram of the distribution of FLUXNET sites zonally, resulting in 
quite a different view of its coverage.  Viewed this way, it is apparent that while FLUXNET’s 
coverage extends throughout the world and spans terrestrial climates, the sampling is 
biased relative to carbon fluxes. About 85% of FLUXNET sites are between 30 and 55 
degrees north latitude, in a region of low GPP and intermediate-to-low carbon storage. The 
broad distribution of FLUXNET sites have demonstrated their value in understanding the 
principles of ecosystem carbon exchange (Churkina et al 2005, Baldocchi et al 2008, Stoy et 
al 2009), but using these data to describe the state of the planet’s carbon cycle remains 
problematic (Beer et al 2011, Jung et al 2011.  The ability of these data to benchmark global 
models depends on extending process-level validation from the better-sampled to the 
undersampled regions, and given the differences in biotic and abiotic conditions, this is 
unlikely to reduce uncertainty sufficiently for skillful prediction. 
 
The FLUXNET sites span a wide range of variability in drivers of carbon exchange, but do 
not sample the full range of likely variability in rates of carbon exchange.  FLUXNET 
coverage is severely limited in the high GPP/ high carbon storage tropics, and in the low 
GPP but high storage arctic/boreal zone (ABZ).  Current sampling of the variability of 
ecosystem fluxes is lowest in the regions with high flux or storage.  Extremely low tropical 
and ABZ coverage implies near-certain biases, contributing to uncertainty in model 
parameterization (Fisher et al 2014; Galbraith et al 2010).  Perhaps even more serious, the 
ability of such a biased global observing system to serve as an early warning system for 
carbon cycle or ecosystem change may be compromised by low coverage in critical regions. 
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While model development and evaluation have historically focused on in situ data, new 
remote sensing technologies are expanding the number of ecosystem properties that can 
be quantified from space. Many of the key stocks and fluxes in Figure 3 above can, or will 
soon be estimated using remote sensing.  Given the challenges of long-term in situ 
observations in tropical and ABZ regions, satellite measurements can make an increasingly 
important contribution.  Remote sensing complements the detailed information available in 
situ by providing broad spatial and temporal coverage.  
 
Photosynthetic carbon uptake or GPP has been mapped, somewhat indirectly, from satellite 
estimates of light interception using light use efficiency models (Sellers et al 1993), and this 
product has produced an increasingly clear view of the distribution of GPP over the planet, 
agreeing well spatially with eddy covariance estimates (Verma et al 2014).  These 
calculations are based on the light use efficiency model where: 
 
Eq 1: GPP = PAR (PAR x FPAR) 
 

Where PAR is the intrinsic light use efficiency, FPAR is the fractional photosynthetically 
active radiation absorbed by the canopy and PAR is the incident amount.  Additional terms 
are typically included to describe reductions due to stress (water, high temperature) not 
captured by the observables.  In remote sensing-based approaches, the observables are 
APAR and PAR.  The actual GPP is constrained by these observations but can only be 
calibrated and validated locally using eddy covariance or other methods (Verma et al 
2014).   These satellite-constrained models of GPP also show trends (Running et al 2012), 
but the accuracy of these trends is hard to assess, since few independent data exist.   
 
A new, related method uses solar-induced fluorescence (SIF) to estimate GPP.  SIF can be 
described by: 
 
Eq 2: SIF = F  (PAR x FPAR) 
 

Where F is the ratio between fluorescence photons emitted and light absorption.  As a 
result, the two approaches are related by: 
 

Eq 3: GPP = SIF 

 
The combination of SIF and FPAR observations provides information on both the right-
hand-side and the left of the carbon balance equation.  As a result not only is the driver 
(FPAR) constrained by observation (eg, from MODIS), the responses (SIF and GPP) are as 
well. SIF is important, first, because the efficiencies (F and PAR) are now also constrained 
by earth observations and second, because, during stress rates of GPP and hence SIF may 
respond before leaf area (the control over FPAR) changes.   
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The scaling between fluorescence and photosynthesis from seconds to seasons is complex 
and the observed linear global relationship not well understood (Frankenberg et al 2011, 
van der Tol et al 2009).  The satellite measurement is made consistently at mid-day, under 
high light conditions and with repeat intervals of days to weeks (Wennberg et al 2013, 
Frankenberg et al 2011).  The satellite measurement also reflects the canopy SIF response 
to absorbed PAR, and so its variation in time and space reflects incident and absorbed 
radiation, adding many factors not usually present in the laboratory.   In situ studies show 
clear positive correlations between canopy SIF and GPP. The efficiency (F) is determined 
from the slope of the SIF:(PAR x FPAR) relationship, and this efficiency seems to vary 
systematically with stress (Flexas et al 2002).  While considerable research is required to 
fully understand these new observations, early indications are very promising (Lee et al 
2013, Joiner et al 2012).  Solar-induced fluorescence (SIF) can provide observations and 
estimates of vegetation stress responses in regions where flux sites are sparse (Figure 4).   
 
The space-based technique for measuring SIF makes use high spectral resolution remote 
sensing (Frankenberg et al 2011, Joiner et al 2012).  Solar induced fluorescence photons 
are emitted in proportional response to photosynthesis and can be observed by 
appropriate instruments in saturated absorption features where no reflected sunlight is 
present (Berry et al 2012).  SIF measurements are now available, by serendipity, from 
orbiting sensors like GOSAT and the OCO-2 satellite, launched in July 2014, but only at low 
spatial resolution and coverage (Figure 5).    
 
This new measurement already shows high correlation with other measures of GPP 
(Frankenberg et al 2011), and has provided information on previously-unknown variability 
in global photosynthetic rates (Guanter et al 2014).  While leaf-level relationships between 
fluorescence and photosynthetic rates are complex, available data shows predictable 
scaling between variability in space-based SIF and GPP (Wennberg et al 2013).  SIF  
complements the inference of net ecosystem exchange (NEE) from gradients of CO2 in the 
atmosphere from sensors like GOSAT and OCO-2 (Miller et al 2007; Crisp et al 2008). No 
direct measurement of respiration is currently available, but it could be constrained by 
simultaneous estimates of GPP from SIF and NEE from spaceborne measurements of CO2.  
 
Global estimates of carbon storage are uncertain (Figure 3).  We assessed the distribution 
of forest inventory data compared to a recent space-based estimate of global biomass 
stocks (Figure 5).  Today’s forest inventory data are biased globally towards the mid-
latitudes, with limited coverage in the high biomass tropical and boreal forests.  The 
distribution of total carbon stored in live woody vegetation (above- and below-ground) 
along with the samples of in situ measurements from national forest inventories (Figure 5) 
shows that forests in temperate and boreal regions dominate observations, with 5-15 plots 
1000 km-2.. Tropical regions are grossly undersampled by comparison, with <1 plot 1000 
km-2 or about 1000 tropical plots globally.  As a result, maps of tropical carbon do not agree 
more than suggested by chance and biases could easily be as high as 30% (Mitchard et al 
2014).  Brazil is developing a new forest inventory which will bring coverage to about 2 
plots 1000 km-2 (de Freitas et al 2006). Because of the sparse plot coverage in the tropics, 
where much of the world’s forest biomass is concentrated, spaceborne measurements are 
critical to expand sample sizes and reduce bias error (Saatchi et al 2014, Asner et al 2014).  
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Repeat space coverage may also be the best means for assessing long-term changes to 
forest carbon stocks, if sufficient accuracy and length of record can be achieved to enable 
quantification of change over time.  Despite the significant aboveground biomass 
concentrated in boreal forests, ABZ carbon storage is dominated by vast stocks of soil 
carbon (Figure 5).  Because high latitude carbon storage is dominated by soils whose 
dynamics are controlled by the growing season length and moisture availability, biomass 
measurements will be a weaker constraint on the ecosystem model predictions compared 
to in the tropics (Kimball et al., 2000; Kim et al., 2012; Barichivich, et al., 2013). 
 
Total and soil carbon storage cannot be observed directly using remote sensing with 
current or proposed technology, but aboveground carbon storage (particularly in wood) 
can be estimated using active remote sensing techniques from a combination of radar and 
LiDAR (light detection and ranging) sensors globally (Saatchi et al., 2011).   Both Radar and 
LiDAR (Saatchi et al 2011, Lefsky et al. 2005; Asner et al., 2012) have proven extremely 
useful, although each technology has somewhat different strengths and weaknesses.  LiDAR 
measurements provide the most direct estimate of forest structure and can be used to 
estimate forest biomass (Drake et al., 2002; Lefsky et al. 2005; Asner and Mascaro,  2014).  
Previous spaceborne LiDAR provided systematic but sparse sampling of the world with 
high spatial resolution (~ 0.25 ha) (Lefsky et al. 2005), measuring canopy height (Simard et 
al 2011), which can be related statistically to biomass (Saatchi et al., 2011; Baccini et al., 
2012).  The recently selected GEDI mission will update this record with optimized LiDAR 
sampling for biomass using the International Space Station as a platform. 
 
Radar observations at long wavelengths (20-80 cm) are sensitive to the amount of biomass 
present at landscape scales ( 1-ha), by indirectly measuring forest structure (volume and 
height) (Shugart et al, 2010). Radar sensors, unlike LiDAR, provide comprehensive 
coverage, and because of their ability to penetrate through clouds, radar sensors 
complement LiDAR and will be used for global observation of forest carbon storage and 
changes from disturbance and recovery processes as part ESA’s Earth Explorer mission 
(BIOMASS) and NASA’s Decadal Survey mission (previously called DESDynl-R, now called 
NISAR) (LeToan et al., 2011; Hall et al., 2011).   
 
Remote sensing complements in situ observations by providing more extensive and less 
biased sampling, while in situ calibration and validation are required to define allometric 
ratios and wood density.  However, data from spaceborne sensors overcome the 
statistically biased sampling of research plots, particularly in tropical forests where 
national forest inventory is not available and substantially reduce or eliminate spatial 
undersampling (Saatchi et al, in press, Asner and Mascaro 2014).  LiDAR, radar and even in 
situ sampling approaches require information about wood density and/or regional 
variations of biomass allometry to quantify the vegetation carbon storage accurately but 
these limitations apply to in situ and remote sensing approaches, emphasizing the need for 
close coordination of ground and space-based data collection.   
 
Both radar and LiDAR methods measure properties correlated with biomass, similar to 
biometric methods in situ and require knowledge of additional parameters, including plant 
allometry and wood density.  This is also true of field studies (that also measure tree 
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diameter and height and not biomass directly), so the additional sampling density and 
unbiased observations from remote sensing are a major and airborne LiDAR is becoming 
an operational tool for many forestry agencies.   
 
Diversity and functional diversity. Uncertainty about key plant and ecosystem 
properties, captured today in Plant Functional Type (PFT) distributions is high.   Models 
include a small number of plant traits to capture functional differences and focus on for 
example nitrogen concentration, leaf mass per unit area, the maximum velocity of 
photosynthesis, lignin concentration as an index of decomposability, and root:shoot ratios. 
These plant traits influence growth, competition, environmental sensitivity and carbon 
storage, and many of these can be estimated from remote sensing (Table 1).  Traits 
influence plant’s interactions with each other, and with other trophic levels, and determine 
trajectories of change as competition and other successional processes occur.  These 
processes cannot be understood without characterizing the range of these properties 
within regions or biomes, mean values as are used in today’s models are not sufficient.   
 
Today, models use extremely reduced descriptions of functional diversity to simulate 
processes.  The roughly 250,000 vascular plant species worldwide are represented in 
models by 7-22 PFTs (Lavorel et al 2007, Poulter et al 2011).  Disaggregation of the 
information today lumped into a small number of global PFTs is needed to understand how 
ecosystem carbon storage and climate sensitivity will evolve into the future, and this 
requires more, and more systematically collected, knowledge of plant traits.  Models group 
vegetation into a small number of plant functional types (PFTs), and assign parameter 
values to each PFT.  The majority of biome-specific parameters in ecosystem models reflect 
plant traits affecting photosynthesis, carbon allocation, decomposability and other 
processes.  
 
To assess the data available to characterize plant functional diversity and characterize 
PFTs, we examined currently available data for overall plant diversity (as a measure of how 
many PFTs might be required) and functional diversity, or the data available to estimate 
parameter values of  an increased number of PFTs.  Figure 6 shows the output of a 
statistical model of global vascular plant biodiversity (Kreft and Jetz 2007), with diversity 
given in estimated species per unit area (“” diversity, or richness).  The model predicts 
diversity as a function of climate, orography (some data sets span a wide range of 
altitudes), and evolutionary history.  The figure shows the estimated diversity for each ~1o 
grid cell within a latitude band, and indicates the zonal heterogeneity of diversity at that 
latitude.    
 
Plant diversity is highest in the tropics, with secondary maxima in both hemispheres.  High 
latitude regions have low diversity in both hemispheres.  Figure 6 also shows the 
distribution of observations of important plant functional traits (used to estimate model 
parameters) from a major international database (TRY; Kattge et al 2011).  The figure 
shows the proportion of all data on a set of key traits needed by models (Table 1) at any 
given latitude.  While the total number of observations is quite large (millions), the 
observations are most limited, particularly relative to the level of diversity found there, in 
the diverse tropics.  The distribution of observations is biased to the northern hemisphere 
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mid-latitudes, from regions of intermediate to low diversity, while regions of high diversity 
are under-sampled. 
  
The tropics, containing the bulk of the world’s plant species, are the most sparsely sampled 
region.  Sampling challenges are worse than might appear from the plot as the data are 
dominated by observations from a few well-studied sites.  For example the large number of 
observations at 10oN all come from a single site (the Smithsonian Tropical Research 
Institute’s Barro Colorado site in Panama: 9.15N, 79.85W), and so sample a single cell of the 
many cells at that latitude.  Other grid cells in that latitude have entirely different species, 
and significantly different climates: the latitude includes land in Africa and Indonesia.  This 
sampling outcome results in the lowest number of trait observations per unit diversity 
where diversity is highest.  The lack of coverage in tropical trait data may contribute to 
current asymmetries in model parameterization: the species-rich tropics are represented 
in the widely used IGBP system by two forest types (Eidenshink and Faundeen, 1994), 
while the far-less-diverse temperate and boreal zones have three forest PFTs each.  This 
distribution of PFTs is determined more by what can be observed with moderate 
resolution remote sensing than the actual levels of functional diversity in these regions.  
Experiments and models suggest that representation of diversity influences the way in 
which ecosystems respond to change, and so limited representation of heterogeneity 
affects system behavior and predictive skill (Hooper et al 2005, Alton et al 2011, Pavlick et 
al 2012). 
 
Imaging spectroscopy can quantitatively map plant diversity because structural and 
chemical traits influencing spectral reflectance are often distinctive to species, and have 
lower variability within species than between species (Asner 2014: Figure 7).  Remotely 
observable traits include chemical composition (nitrogen and other elements), leaf mass 
per unit area and chlorophyll content.  This technique, long under development, is now 
routinely applied using aircraft sensors (Asner et al 2012, 2014), and spaceborne 
application is planned for the 2020s through NASA’s HyspIRI mission 
(http://hyspiri.jpl.nasa.gov/).  Remote estimates of plant traits are quite different from in 
situ estimates, like other remote sensing techniques.  Spectroscopic estimates of traits 
integrate over pixels, are influenced most by the upper canopy and typically have precision 
(R2) of 60-90%, with accuracy from 10-20% RMSE (Asner et al 2014).  These uncertainties 
are comparable to the precision needs of ecosystem models (Papale et al 2006).  These are 
comparable to estimates from chemical analyses of individual leaves scaled to canopies 
(Serbin et al 2014). 
 
Imaging spectroscopy can estimate the variety, relative abundance and community 
turnover of plant species at large scales because of the spectral uniqueness of many plant 
species (corresponding to species-specific chemical and leaf structural properties), result 
in an estimate of diversity parallel to ground-based estimates.  This allows estimation of 
biological diversity without direct reference to taxonomic identity and so complements 
traditional field techniques, but on a spatially explicit basis (Féret and Asner 2014).  Figure 
7 shows an image from the humid tropics, converted first into diversity and then into  
diversity, or turnover, using the methods of Féret and Asner (2014).  Figure 7d shows the 
range of spectra collected within this region.  Plant traits influencing the observed spectral 
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reflectance include nitrogen, which in this ecosystem ranges from ~1% to more than 5%, 
chlorophyll and other pigments.   
 
The low number of PFTs used in the tropics implies that all the species there are 
functionally equivalent: these results suggest functional diversity as great or possibly much 
greater than in other ecosystems.  Canopy reflectances at a benchmark wavelength of 1000 
nm range from 30 to 60%, similar to the range observed globally across all vegetated 
biomes.  The wide range of canopy traits observed suggests potentially high functional 
diversity: the range of N contents in this one forest span nearly the global range (Table 1).  
Plant traits influencing growth rate tend to be correlated with wood density (Chazdon 
2014) so improved mapping of plant traits may also reduce uncertainty in aboveground 
biomass estimates.  This all suggests that the classification of the tropical biome as a single 
functional type reflects the limitations of current remote sensing instruments and sparse in 
situ data, and not the relative functional diversity of tropical forests. 
 
In addition to quantifying patterns of plant diversity, imaging spectroscopy can be used to 
quantify aspects of plant functional diversity.  Imaging spectroscopy allows a number of 
key plant parameters to be estimated (Table 1).  These parameters largely define plant 
growth strategies and can be used to understand plant responses to climate, competition 
and herbivory (Coley et al 2014).  Particularly powerful results can be achieved by 
integrating estimates of chlorophyll, nitrogen, LMA and Vcmax (Wright et al. 2004), which 
may reveal trade-offs in canopy growth traits associated with climate change over time.  
Table 1 shows the ability of remote sensing to estimate the key traits described above. 
Models must resolve global gradients in these traits, and these global gradients can be well-
resolved with anticipated accuracy and precision.  Since HyspIRI’s launch is not even 
scheduled yet, and no analogous global mission has ever flown, this technology cannot be 
demonstrated in the same way as GPP (MODIS, GOSAT) and biomass (ICESat) can, and so is 
a crucial new Earth Observation.  However, space-based hyperspectral sensors are 
technologically mature: instruments with similar performance to that needed for remote 
sensing of terrestrial ecosystems have successfully flown around Mars [Pelkey et al 2007] 
and the Moon [Pieters et al 2009].    
 
The increase in knowledge of plant functional diversity data that would result from space-
based observations is extraordinary.  As Figure 6 demonstrates, current observations of 
plant traits are sparse and biased in their distribution and the most diverse ecosystems 
have the most limited data.  Figure 8 shows the increase in plant trait data that could be 
obtained via an imaging spectrometer housed on NASA’s International Space Station (ISS), 
the most likely location for a near-term instrument deployment.  The simulation assumes 
30 m2 pixels, and a swath width of about 30 km, and an 18-month mission, typical for the 
ISS.  The simulation takes into account the ISS orbital altitude and path, since the ISS is in 
an inclined orbit with varying overpass times, and cloud statistics to generate an estimate 
of cloud-free pixels.  The simulation includes only land pixels.  The typical number of plant 
trait records per degree of latitude is about 10, with maxima around 1000.  For each degree 
of latitude, a mission like this could collect 500 million pixels, for a 500,000-fold increase in 
coverage.  Since in many cases, the underlying in situ data are measurements of a few 
individual plants or leaves, scaled to the canopy, and the remote observations are of areas 
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of 10s of m2, the information difference is actually hard to compare outside of a formal 
modeling framework.  The actual increase in information is less because of spatial 
autocorrelation, redundancy and measurement uncertainty, but would allow characterizing 
many more PFTs, and the spatial distributions of traits within biomes and environmental 
correlations in far more detail than available now.  Global coverage of plant trait 
distributions data would fundamentally change the vegetation modeling paradigm from its 
current data-poor to a data-rich framework (Luo et al 2012). 
 
The suite of measurements and mission opportunities described here does not do justice to 
the full range of spaceborne data contributing to global ecology, which covers a far wider 
range of properties than described here, including climate drivers of ecological processes, 
land use and land cover change and the hydrological cycle.  An overview of some of these 
capabilities, focused on climate and hydrological correlates of carbon cycle processes, is 
provided in Table 3.  The full range of capabilities related to land imaging of land use and 
land cover change is outside the scope of this perspective, but see NRC (2013). 
 
Conclusions 
Important gaps exist in our observations of the terrestrial carbon cycle, resulting from 
sparse and biased sampling of high flux and high storage regions. Scientists have a sense of 
these gaps: here we present an in-depth analysis of sampling relative to current knowledge 
of carbon geography.  Networks or data sets assembled post-hoc will almost always contain 
sampling bias that will limit, or at least influence the inferences that may be drawn 
(Lindenmayer et al 2013). New space-based observations can strongly complement in situ 
observations in providing required quantitative ecosystem information globally.  While 
spaceborne measurements have uncertainty and bias errors of their own, they can aid 
greatly in reducing bias errors associated with relatively sparse in situ systems through 
their coverage and large sample size, and can be used to assess bias and extrapolate limited 
local information.  A number of questions remain: 
 
What is the minimum observing system needed to understand and detect change in 
terrestrial carbon dynamics?  Whatever that minimum is, current networks do not reach 
it. Gaps exist in knowledge of the terrestrial carbon cycle, resulting from sparse and biased 
sampling of high flux and high storage regions.   Sampling of fluxes is sparse in regions of 
potentially high fluxes, sampling of biomass is next to nonexistent in the highest biomass 
regions of the world, and plant traits are least known where their diversity may be highest.  
Networks or data sets assembled post-hoc will almost always contain sampling biases that 
will limit, or at least influence the inferences that may be drawn (Lindenmeyer et al 2013).  
Formal network design studies should become a required precursor to large or even 
individual investment in site selection and infrastructure development (Schimel et al. 2007; 
Hoffman et al. 2013). 
 
Can adequate coverage realistically be achieved by increasing the investment in in 
situ observations of fluxes, biomass and plant properties?  Although it is tempting to 
see a simple explanation for the current distribution of terrestrial research sites and data in 
the distribution of wealth globally, and the tendency of funding agencies to support 
research within their own territories, the reality is different.  The tropics and ABZ face 
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serious access challenges, with limited or no roads, and restricted access to electrical 
power.  Complex terrain in some of the most productive and diverse parts of the tropics, for 
example the western Amazon and much of southeast Asia, further complicates access and 
adds to the challenge of implementing eddy covariance sites. Installing large towers is 
expensive and may be in conflict with conservation objectives.  The incessant biological 
activity of tropical plants and animals and mechanical effects of ABZ temperatures, freezing 
and wind create maintenance issues of their own. Logistical constraints will limit the 
number and distribution of site locations, even if financial resources were available to 
achieve sampling density similar to the mid-latitudes.   Other approaches must be used to 
obtain sufficient coverage. 
 
Can remote sensing provide quantitative and compelling information on ecosystem 
structure, function and functional diversity?  New space-based observations of 
structural variables such as biomass, function, captured in flux estimates and key plant 
traits and functional diversity, estimated from the spatial variability of fluxes and traits can 
strongly complement in situ observations and provide quantitative ecosystem information 
globally, beyond that available from remote sensing traditional indices.  Spaceborne 
measurements can reduce bias errors associated with relatively sparse in situ systems 
through their spatial coverage and large sample size, and can be used to assess bias and 
extrapolate limited local information.  Space-based systems can also measure drivers of 
ecological change (Table 3).  The evolution of remote sensing systems that combine 
estimates of drivers of ecological change (Table 3) and carbon cycle responses (Table 2) 
can, in concert with appropriate and coordinated in situ and calibration/validation efforts, 
allow the testing of ecological theory at previously inaccessible scales. 
 
Can combining in situ and remote observations reduce sampling bias?  Assembling 
networks and data sets post hoc carries with it the near-certainty of biases: for global 
models where calculating the correct integral or average value is critical this is a 
particularly serious issue (Sorrano and Schimel 2014, Lindenmeyer and Likens 2013).  In 
some cases more data may provide less insight than the right data from a careful design 
(Schimel et al 2012).  Remote observations, while containing biases of their own, provide a 
largely-independent reference for assessing bias in in situ networks and identifying 
potential covariates for correction of spatial sampling bias.     
 
What about variables that cannot be sensed remotely? Using remote sensing for key 
properties of the biosphere may allow redirection of in situ emphasis to equally-important 
measurements and experiments, on soil properties, microbial processes, genomics, and 
trophic processes that cannot be sensed remotely and that are equally important to 
prediction.   This may be particularly important at high latitudes where soil processes 
dominate potential tipping element processes.  Coordination of in situ and remote 
observations is critical helps with calibration and validation. 
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Without a coherent set of observations of terrestrial ecosystems and the carbon 
cycle, can we achieve early warning and prediction of carbon cycle-climate 
feedbacks?  Most ecosystem observations are initiated for project purposes and, unlike 
meteorological observations, not as part of a global design to inform or evaluate models 
and predictions.  As a result, and as a consequence of logistical issues, the current in situ 
network is sparse in the regions where carbon cycle feedbacks are most likely, making 
detection of changes difficult.  Detection alone is not sufficient: to enable prediction, 
attribution of changes to quantified mechanisms is also essential. In order to know carbon 
stocks and fluxes always and everywhere, coordination of in situ and remote observations 
is needed.   
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Figure 1: Spatial distribution of terrestrial vegetation and soil carbon storage with the three 
“tipping element” regions identified by Lenton et al (2007).  The tipping elements coincide 
with regions of high storage and hence high potential for losses to influence atmospheric 
concentrations.  Red points show the distribution of carbon flux observations, showing that 
this network, like the others assessed in this paper have sparse coverage in the tipping 
element regions.  Data from Ruesch et al (2008) and FAO et al 2009. 
 
Figure 2:  Eddy covariance sites span much of the world’s climate variation.   FLUXNET sites 
plotted in climate space (red points), with the distribution of ecosystems in climate space 
shown in gray.  Temperature and precipitation are annual means for 1o latitude-longitude 
cells.  This figure shows the climate-based coverage of the network: figure 3 shows its area-
weighted coverage, which is quite different. 
 
Figure 3: The two “poles”—tropical and arctic/boreal-- of the terrestrial carbon cycle.  The 
modeled distribution of GPP and total (soil plus vegetation) carbon storage.  FLUXNET 
sampling spans the latitude range of global land, but sampling is sparse in regions with high 
flux (GPP) and storage. 
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Figure 4:  The global distribution of solar-induced fluorescence, showing its strong correlation 
to modeled GPP (Figure 3), compared to FLUXNET’s distribution.  SIF may provide global 
coverage of GPP, with extensive data in high flux regions, but using existing and planned 
satellites, it will provide low resolution in space and time compared to eddy covariance. 
 
Figure 5:  The distribution of woody (forest and shrubland) area and biomass, estimated by 
radar-LiDAR fusion compared to data availability from forest inventory.  The red histogram 
shows forest inventory plot density in plots 1000 km-2.  Similar to flux observations, biomass 
data is sparse in regions of maximum storage. 
 
Figure 6: Global plant diversity and functional diversity data.  The black dots show the 
estimated number of vascular plant species per equal area grid cell (≈12, 0 km2, ≈1° latitude 
× 1° longitude near the equator) from a statistical model (Kreft and Jetz 2007). The red 
histogram shows the number of existing in-situ measurements of leaf nitrogen concentration 
in a global trait trait database (Kattge et al 2011) per degree latitude.  Most data on plant 
functional diversity come from regions of low to intermediate overall diversity.   
 
Figure 7: Airborne high-fidelity imaging spectroscopy provides a direct path to estimation of 
vegetation diversity.  In this example, (a) visible-to-shortwave infrared (VSWIR; 400-2500 
nm) imagery over an Amazonian rainforest was acquired using the Carnegie Airborne 
Observatory.  The spectral diversity of the forest canopy has been translated into estimates of 
local-scale (alpha) and landscape-scale (beta) diversity using the concept of spectral species 
distributions (Féret and Asner 2014).  (b) Alpha diversity is shown as the evenness of canopy 
species relative abundances within one hectare grid cells based on the Shannon Index. (c) 
Beta diversity is shown as the dissimilarity of canopy species composition among grid cells 
based on the Bray-Curtis Index.  The remotely sensed alpha and beta diversity were well 
validated with an extensive field plot network (Féret and Asner 2014). 
 
Figure 8: Simulated gain in information from in situ relative to spaceborne plant trait data.  
Spaceborne data could increase the amount and coverage of plant trait data by many orders 
of magnitude.  The red histogram shows log of the number of existing in-situ measurements of 
leaf nitrogen concentration in a global trait trait database (Kattge et al 2011) per degree 
latitude on a log scale. The grey histogram shows the potential number of cloud-free 
retrievals possible with a proposed two-year imaging spectroscopy investigation be flown 
aboard the International Space Station. Each retrieval would provide data for four critical 
traits (leaf mass per unit area, chlorophyll concentration, nitrogen concentration, and 
photosynthetic capacity). 
 
Table 1:  Certain key plant traits may be estimated from space-borne sensors.  The table 
describes the traits, their global ranges, their measurement accuracy from remote sensing 
and their role in terrestrial carbon models 
 
Table 2: Variables, technologies and missions for carbon fluxes, stocks and parameters.  The 
table shows the model fluxes, state variables, parameters and drivers that may be informed by 
existing or near-term space missions, together with the missions, time frames and geophysical 
data products corresponding to model requirements. 
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Table 3.  The range of quantities available or soon to be available from missions which are 
either on-orbit or well along in planning and funding.  Remote sensing can increasingly 
quantify drivers of ecosystem response, such as land surface temperature, precipitation, soil 
moisture and freeze/thaw at spatial and temporal scales useful for model development and in 
simulations.  The range of quantities available or soon to be available from missions that are 
either on-orbit or well along in planning and funding.  Combining information on drivers 
(temperature, precipitation, etc) with responses (GPP, NEE, NBP), sensitivities or the 
derivatives of carbon variables with respect to climate variables can be estimated at large 
scales, for example (GPP) /(water stress). Remote sensing is routinely used for quantifying 
land use, land cover, and land cover change. We do not address remote sensing of land use 
and land cover change in detail, an area of longterm success using remote sensing 
approaches.   
 
 
 
 
 
 
 
 
 
Trait name Units Description/significance Global 

range 
Measurement 
accuracy from 
remote sensing 

Corresponding 
model 
quantity/function 

Citation 

Foliar nitrogen 
concentration mg g-1 

Rubisco content, CO2 fixation, 
GPP, decomposition 

3-64 mg 
g-1 

< 20% RMSE1 

Foliar N, model 
state variable and 
control over GPP 

Wright et al. 
20014 
[GLOPNET 
database]; 
Reich and 
Oleksyn 2004 

Leaf mass per 
area g m -2 

Leaf structure/density, leaf 
physiological strategy, leaf 
longevity 

12-1516 
g m -2 

< 3% RMSE1 

LMA, model state 
variable and 
control over leaf 
longevity 

Wright et al. 
2004, Poorter 
et al 2009 

Chlorophyll (a+b) mg cm-2 
light harvesting, ATP/NADPH 
synthesis, RuBP regeneration 

1-150 
mg cm-2 

< 10% RMSE1 

Chlorophyll, leaf 
optical 
properties, 
albedo, Vcmax 

Coste et al 
2010; Asner 
and Martin 
2008 

Lignin 
concentration % 

Decomposition, leaf water 
transport 

2-65 % 

2< 5% RMSE1 

Lignin, model 
state variable and 
control over 
decomposition 

Asner and  
Martin 2011  

Maximum rate of 
RuBP 
carboxylation 

μmol 
m2 s-1 

Photosynthetic 
capacity/performance, CO2 
uptake,  

0-200 μ 
mol m2 
s-1 

< 15 μ mol m2 s-1 

2 

Vcmax, model 
parameter, 
regulates GPP 

Serbin et al. 
(revision 
submitted); 
Kattge et al. 
2009 
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Variable type and 
identity 

Technology Current or 
planned 
mission(s) 

Status Quantity 
retrieved 

Key 
reference 

Ecosystem Flux      

GPP Spectroscopy GOSAT, 
OCO-2 

GOSAT: on 
orbit 
OCO-2: 
launch 
2014 

Solar-induced 
Fluorescence 

Frankenberg 
et al 2012 

Net Ecosystem 
Exchange 

Spectroscopy 
and inverse 
modeling 

GOSAT, 
OCO-2 

GOSAT: on 
orbit 
OCO-2: 
launch 
2014 

Column CO2, 
followed by 
inverse or 
assimilation 
modeling 

Crisp et al 
2008, Baker 
et al 2006 

Ecosystem state 
variable 

     

Biomass Radar or 
LIDAR 

BIOMASS, 
ICESAT II 
GEDI 

BIOMASS: 
launch 
2020 
ICESat-2: 
launch 
2016, 
GEDI 
>2018 

Canopy height or 
volume 
scattering 

Saatchi et al 
2011 

Ecosystem 
parameters 

     

Biological 
Diversity 

Imaging 
spectroscopy 

HyspIRI Planned, no 
date 

Distinct spectra 
per unit area 

Feret and 
Asner 2014 

Functional 
diversity (plant 
traits) 

Imaging 
spectroscopy 

HyspIRI Planned, no 
date  

LMA, 
Chlorophyll, 
nitrogen 
concentration, 
Vcmax, other 
chemicals 

Kokaly et al 
2009 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
 
 
 

 

Model variable 
type and 
identity 

Technology Current or 
planned 
mission(s) 

Status Quantity 
retrieved 

Key 
reference 

Soil water, plant 
water stress 
(canopy water 
content, 
vegetation optical 
depth, land 
surface 
temperature) 

Passive 
and/or active 
microwave. 
Thermal 

SMOS, 
SMAP, 
Aquarius, 
ECOSTRESS 

On orbit 
(SMOS) 
2015 
(SMAP), 
ECOSTRESS 
(2017-18) 

Soil moisture, plant 
canopy water 
content, 
evapotranspiration, 
soil freeze/thaw, 
surface inundation 

Entekhabi 
et al 2010, 
Lee et al 
2013 

Precipitation Radar GPM On orbit Rainfall Hou et al 
2013 

Land surface 
temperature 

Thermal MODIS, 
VIIRS, 
LANDSAT 8, 
Sentinel-2, 
ECOSTRESS 

On orbit or 
planned 
(Sentinel-2) 
2015, 
planned 
2018 
(ECOSTRESS) 

Temperature Wan 2008 

Net Ecosystem 
Exchange (NEE), 
Net Biome 
Productivity 
(NBP) using 
inverse or 
assimilation 
modeling 

Spectroscopy GOSAT, 
OCO-2 

On orbit XCO2  (column CO2) Crisp, et al 
2008 
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