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Abstract

Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services
upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance
and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are
mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model
(GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments.
Functional forms and parameter values were derived from the theoretical and empirical literature where possible.
Simulations of the fate of all organisms with body masses between 10 mg and 150,000 kg (a range of 14 orders of
magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover
rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in
general agreement with current data and theory. These properties emerged from our encoding of the biology of, and
interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate
that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of
ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures.
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Introduction

The pace and scale of anthropogenic environmental change has

caused the widespread degradation of ecosystems and the services

they provide that ultimately support human life on Earth [1].

Understanding and mitigating these impacts necessitates the

development of a suite of tools, including policy instruments,

practical conservation measures, and empirical research. At

present, a variety of models are used to assist decision-making in

relation to biodiversity and ecosystem services. Most are correl-

ative, relying on statistical relationships derived from limited

observational data without explicit reference to the underlying

mechanisms; examples include the GLOBIO model, species

distribution models, and models of local extinction based on

species–area relationships [2–4]. All of these models are useful, for

different purposes. However, what is urgently needed is mecha-

nistic models, which explicitly represent the biological, physiolog-

ical, and ecological mechanisms underlying the systems in question

[5]. One of the key benefits of mechanistic models is that they are

likely to make more accurate predictions under novel conditions

[6]. For example, Earth System Models (ESMs), containing

mechanistic descriptions of multiple interacting components of

the climate, atmosphere, and ocean, are used to project properties

and dynamics under future climate conditions that have not been

observed previously (at least in relation to historical data) [7].

Similarly, mechanistic models of ecosystems would allow us to

predict a given combination of human pressures on a given

ecosystem, even when there is no or little historical data on which

to rely. Mechanistic models can also improve our understanding of

the systems being modelled, allowing predictions to be understood

in relation to the underlying mechanisms that generate them [8].

This in turn might lead to novel ways to mitigate or even reverse

the degradation of ecosystems.

We present the first process-based, mechanistic General

Ecosystem Model (GEM) (called the Madingley Model). It is

general in the sense that it strives to use a unified set of

fundamental ecological concepts and processes for any ecosystem

to which it is applied, either terrestrial or marine, and it can be

simulated at any spatial resolution from local up to global scales.

Applying a general modelling approach globally has three main

advantages: (1) it allows testing of whether the same set of

ecological mechanisms and concepts can adequately capture

broad-scale ecosystem behaviour in both the marine and terrestrial

realms; (2) it enables the development of a suite of predictive
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outputs common to both realms, from which standardised metrics

of ecosystem health can be calculated; and (3) it enables links

between marine and terrestrial ecosystems, both natural and

human-driven, to be modelled. The model is also spatially explicit,

with dynamics in a given location driven by the climate and other

local factors, as well as by connections with other ecosystems

through dispersal, and is mechanistic, with dynamics being driven

by ecological processes defined at the level of individual organisms.

Specifically, we model autotroph (plant) stocks, and individual

herbivorous, omnivorous, and carnivorous animals of all body

sizes, and their interactions. From these interactions, patterns

emerge at larger spatial and temporal scales, including commu-

nities, ecosystems, and global macroecological gradients, without

any direct model constraints imposed on those properties.

Such a GEM has great potential if it can, at a minimum,

reproduce the observed properties of ecosystem structure and

function, and enable the formation of valuable, novel hypotheses,

and precise, testable predictions. Here, we test the model’s ability

to simulate ecosystems that persist over long time scales (1,000 y)

by comparing model predictions with empirical data and test two

theoretical predictions that to date have not been assessed

empirically and have only been studied with simple trophic

models: that the net primary productivity (NPP) of ecosystems

determines the length of trophic chains [9,10] and that herbivore

pressure on autotrophs will reduce once a critical level of carnivore

biomass is supported (‘‘trophic release hypothesis’’ [11]). Finally,

we provide a suite of other novel predictions that demonstrate the

potential utility of the model as an operational tool with which the

effects of human impacts on ecosystems can be explored.

Mechanistic models of specific ecosystems have been developed

previously, and to date these have been constrained to particular

spatial locations or to particular sets of organisms within

ecosystems. For example, dynamic global vegetation models

(DGVMs) are used to represent the physiological and ecological

processes driving plant community dynamics on the global land

surface, enabling investigations into how terrestrial vegetation

interacts with climate [12]. However, these do not include animals

or other heterotrophs, and so are limited in the extent to which

they can be used to understand the roles of heterotrophs in

ecosystems, or to address questions about the conservation of

organisms other than plants. For the marine realm, ‘‘end-to-end’’

ecosystem models have been developed, which include most

trophic levels for particular regions [13]. Examples are the

Ecopath With Ecosim (EwE) [14] and Atlantis [15] models. But

marine models tend to focus either on biogeochemical cycles or on

organisms of economic importance, such as fish, rather than on

the properties of the ecosystem as a whole. They also generally

either use a stock-and-flow formulation [14,15], making them

unable to follow trajectories of individual organisms, or are

restricted to simulating particular guilds of organisms [16].

There have also been previous theoretical examinations of the

potential effect of select processes on select ecosystem metrics, such

as the role of bioenergetics in determining size distributions [17].

Such theoretical studies have been very useful in providing insight

into the potential mechanisms underlying ecosystem structure; but

they have tended to be carried out for single, abstract locations

that are not tied to any real geographical location and to omit

most of the key processes affecting ecosystem structure and

function in reality. We are not aware of any previous attempt to

model emergent ecosystem structure and function by identifying a

minimal, but putatively complete, set of key processes and then

simulating these processes for all organisms globally, over the

actual climate and geography of all marine and terrestrial

environments. It is for these reasons that we refer to the model

presented here as a GEM.

Methods

Model Scope
We identified a set of core biological and ecological processes

necessary to predict ecosystem-level properties: primary produc-

tion for autotrophs, and eating, metabolism, growth, reproduction,

dispersal, and mortality for heterotrophs (Figure 1 and Box 1). We

modelled both marine and terrestrial environments but excluded

freshwater ecosystems. We included all photoautotrophs, and all

heterotrophs that feed on living organisms (i.e., we did not include

chemoautotrophs and detritivores). We generally represented only

macroscopic organisms (.161023 g), except that we included

plankton in the marine realm because of their known importance

to the marine food web [18]. All plant biomass in the terrestrial

realm was modelled, but only leaves, flowers, fruits, and seeds were

available as a food source for herbivores and omnivores. The

marine component included phytoplanktonic autotrophs, which

provide more than 90% of primary productivity in the oceans

[18]. Seagrasses, mangroves, macroalgae, and corals, which are

important autotrophs in coastal systems, are not yet included. In

this proof-of-concept model, we consider a world without any

human impacts, except that we used modern-day climatic

conditions. The model and user guide can be downloaded from

www.madingleymodel.org, and simulation outputs for main

manuscript figures can be downloaded from the Dryad Digital

Repository: doi:10.5061/dryad.5m96v [19].

Traits, Cohorts, and Stocks
Traditional approaches to mechanistic modelling in community

ecology focus on densities or abundances of individuals belonging

to different species [16,20]. These are well suited to modelling a

small set of focal species, but are unfeasible for modelling whole

ecosystems at a global scale, because the vast majority of the

world’s species remain to be described, or are at best represented

by few data describing their distribution and ecology [21–23].

Author Summary

Ecosystems across the world are being rapidly degraded.
This threatens their provision of natural goods and
services, upon which all life depends. To be able to
reduce—and one day reverse—this damage, we need to
be able to predict the effects of human actions on
ecosystems. Here, we present the first example of a
General Ecosystem Model (GEM)—called the Madingley
Model—a novel class of computational model that can be
applied to any ecosystem, marine or terrestrial, and can be
simulated at any spatial scale from local up to global. It
covers almost all organisms in ecosystems, from the
smallest to the largest, encoding the underlying biology
and behaviour of individual organisms to capture the
interactions between them and with the environment, to
model the fate of each individual organism, and to make
predictions about ecosystem structure and function.
Predictions made by the Madingley Model broadly
resemble what we observe in real-world ecosystems across
scales from individuals through to communities, ecosys-
tems, and the world as a whole. Our results show that
ecologists can now begin modelling all nonhuman life on
earth, and we suggest that this type of approach may hold
promise for predicting the ecological implications of
different future trajectories of human activity on our
shared planet.

A Mechanistic General Model of Global Ecosystems
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Instead, we adopted a trait-based approach [24] where

individuals are characterized by their functional traits: categorical

traits, such as feeding mode, which determine the mechanisms by

which organisms exist and which were used to define functional

groups; and continuous traits, such as body mass, which modulate

those mechanisms but do not determine functional grouping.

Taxonomic identity of individuals is ignored for three reasons.

First, there is insufficient species-level information to model whole

ecosystems worldwide. Second, it is more feasible to model the role

of individuals in ecosystems in terms of their traits than in terms of

their taxonomic identity, because of limited taxonomic knowledge

and data [21–23]. Third, in comparison to taxonomic identity,

organisms’ functional traits are more directly relevant to most

ecosystem functions and ecosystem services [25,26].

A separate issue is whether to define the model in terms of

population densities and biomasses within functional groups (i.e.,

‘‘stocks’’ or ‘‘pools’’), or as collections of interacting individuals

each characterized by their combination of functional traits

(individual-based). For all organisms except autotrophs, we used

an individual-based approach, because this allowed the model to

be more finely resolved, and because it enabled us to capture

variation in body mass—one of the most important traits for

determining the rates of ecological processes [27–29] over the

lifetime of an individual. It also enabled us to follow the fates of

individual organisms. Higher level ecosystem properties emerge

from these individual-based rules. Capturing this emergence was a

central aim of this initial work.

Autotrophs were represented as stocks—that is, the total

biomasses of such organisms—because either the definition of an

individual was problematic (terrestrial plants) or rates of turnover

were faster than the modelled time step (marine phytoplankton).

For heterotrophs, simulating every individual separately would

have been computationally intractable given the vast number of

individuals in global ecosystems. Therefore, we adopted a

computational approach based on cohorts. A cohort consisted of a

group of organisms occurring within the same grid cell, with

Figure 1. Schematic of the model. Ecosystem structure and function (B) emerges from a combination of processes operating on individual
organisms within a grid cell (A), and exchange of individuals among grid cells via dispersal (C). Life histories (e.g., average lifespan, lifetime
reproductive success, and generation length) are also emergent (not shown in this diagram, but see Figure 3). Fundamental ecological processes
affect the ecological properties (principally body mass and abundance; represented as the diameter and number of black dots in A, respectively) of
organisms. For computational efficiency, organisms with similar properties are grouped into cohorts (coloured circles in all panels). Graphs in (A)
show illustrative examples of functional forms used to model each ecological process; full mathematical details can be found in the main text and in
Text S1. Panel (C) illustrates how dispersal links different grid cells through the exchange of cohorts via dispersal. As result of the within-grid-cell
processes, and dispersal, the state of the ecosystem—that is, the collection of cohorts within each grid cell—changes dynamically through time.
Panel (B) shows two example measures of ecosystem structure that can be calculated at any time: the relative biomasses in different trophic levels,
and the body-mass abundance distribution of heterotrophs. All such community-level properties and metrics emerge from bottom-up processes in
the model without any model-imposed constraints beyond those processes operating on individual organisms.
doi:10.1371/journal.pbio.1001841.g001

A Mechanistic General Model of Global Ecosystems
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identical traits—that is, in the same functional group and with

identical continuous traits—but not necessarily belonging to the

same taxon. This cohort-based approach allowed us to define the

model in exactly the way that one would do in a fully individual-

based model (i.e., processes defined at an individual level), but also

allowed us to keep the number of computations low enough to be

feasible.

Functional Groups
All stocks and cohorts belong to a functional group, defined

according to the categorical traits of the individuals in that stock or

cohort (Tables 1 and 2).

Individuals in the same functional group interact with one

another and with their environment in a qualitatively similar

manner. Therefore, cohorts within the same functional group are

modelled using the same mathematical representations of the

ecological processes, though the rates predicted by those functions

differ according to continuous traits that differ between cohorts,

such as body mass. Individuals belonging to different functional

groups have at least one qualitatively different interaction with

other individuals or with their environment. We use the same

functional forms for analogous functional groups in the ocean and

on land, but with different parameter values, where justified by

previous research.

Body mass affects many individual properties and interactions,

including feeding preferences and rates, metabolic rates, and

dispersal [27–29]. Therefore, body mass was included as a

parameter in nearly all ecological processes of heterotrophs

(Figure 1).

The Environment
The environment is defined as a two-dimensional layer

representing the land surface and the upper mixed layer (top

100 m) of the oceans. This layer is divided into grid cells within

which individuals and stocks are assumed to be well mixed. The

ecological processes can be affected by the size of the grid cell, the

physical environment at that cell, and dispersal of organisms

among adjacent grid cells. The model can be employed for any

number of grid cells, at any resolution, locally or globally, subject

to computational limitations. For the results presented here, we

used either simulations for individual 1u61u grid cells, or a 2u62u
grid covering the whole globe (see below, and Tables 3 and 4)

except for high latitudes (.65u) because remotely sensed,

exogenous environmental data currently used are not available

for the polar regions. Each grid cell in the model is assigned to

either the terrestrial or marine realm based on a land/ocean mask

[30]. Environmental conditions for each grid cell are read as

model inputs from publicly available datasets: for the terrestrial

realm air temperature [31], precipitation [31], soil water

availability [32], number of frost days [31], and seasonality of

primary productivity [33]; and for the marine realm sea-surface

temperature [34], NPP [35], and ocean current velocity (Table S1)

[34]. The model is flexible with respect to the specific environ-

mental data used, and future simulated environmental conditions

can be used.

The Ecology
We provide a summary of how simulations are run in Figure 1

and Box 1, and an overview of how the ecological processes are

modelled, with the main mathematical functions, is summarised in

Tables 5 and 6. Full details are provided in Text S1.

Autotroph Ecology. In the marine realm, one stock of

phytoplankton per grid cell is modelled, characterised by a total

wet matter biomass at time t, Bp,(t). For terrestrial autotrophs, we

track two stocks of leaves, l, one deciduous and one evergreen,

each characterized by a total biomass at time t, Bl,(t). The biomass

of an autotroph stock s, which could be either phytoplankton (p) or

leaves (l), is incremented in each time step (of length Dt) as follows:

Table 1. Stock functional group definitions.

Realm Nutrition Source Mobility Leaf Strategy

Marine Photosynthesis Planktonic N/A

Terrestrial Photosynthesis Sessile Deciduous

Terrestrial Photosynthesis Sessile Evergreen

Categorical trait values (column names) with the specific trait values for each stock functional group modelled.
N/A values reflect traits that are not applicable to a functional group.
doi:10.1371/journal.pbio.1001841.t001

Box 1. Running simulations within our GEM.

Each simulation is initialised with environmental informa-
tion from multiple datasets (as described in the Methods
section and in Table S1) and spatially distributed stocks
and cohorts (see Methods) according to user specifications
(functional groups and grid locations). During a simulation,
the stocks and cohorts then interact through time and
space. For each time step and each grid cell, the first
computation is to increment the biomass of autotrophs
according to the relevant growth function (Table 5). Next,
the ecology of the heterotroph cohorts is modelled (see
functions in Table 6). The order in which heterotroph
cohorts act is randomised at each time step. Each
heterotroph cohort performs multiple ecological processes
per time step (Figure 1A): Individuals in the cohort (i)
metabolise biomass to sustain their activities; (ii) eat
biomass from either autotrophs if herbivorous or other
heterotrophs if carnivorous, or from both if omnivorous;
(iii) use net biomass gain to grow, if juvenile, or store
biomass for future reproduction if they have reached
sufficient body mass to be reproductively mature; (iv) give
birth to a separate, offspring cohort if sufficient reproduc-
tive biomass has been accumulated; (v) suffer mortality as
a result of being eaten by other cohorts feeding on them,
or as a result of background mortality processes, starva-
tion, or senescence; and (vi) disperse from their current
grid cell to another grid cell. As a result of these
interactions across space and time, communities of
cohorts possessing different functional traits, individual
biomasses, and abundances self-assemble (Figure 1B and
1C).

A Mechanistic General Model of Global Ecosystems
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Bs,(tzDt)~Bs,(t)zDBGrowth
s {DBMort

s , ð1Þ

where DBGrowth
s and DBMort

s are the gain and loss of biomass from

stock s over the time interval Dt, respectively. DBMort
s includes

losses due to herbivory. We use different approaches to model the

gain and loss of biomass from marine and terrestrial autotroph

stocks (Table 5).

In the marine realm, we model growth of the phytoplankton

stock by incrementing the total biomass of phytoplankton in each

cell using satellite-derived estimates of NPP (Table 5). This avoids

us having to adopt computationally impractical time-steps (days) in

order to accurately simulate the dynamics of phytoplankton, which

have rapid turnover rates (in our opinion, an explicit nutrient–

phytoplankton–zooplankton model would be a major improve-

ment to the marine part of the model; see Table 7). Loss of

phytoplankton arises directly from modelling grazing by marine

organisms (Table 5; Equations 3 and 4 in Text S1).

Terrestrial autotrophs are modelled using the climate-driven

terrestrial carbon model of Smith et al. [36]. We selected this

model because it has been parameterized and tested against

empirical data on carbon stocks and flows more rigorously than

similar models of which we are aware (Equations 5–19 in Text S1)

[36]. Moreover, it has a similar level of complexity to that used to

represent heterotrophic organisms. However, like the other model

components we adopted, the vegetation model could be replaced

by alternatives in future studies, including more complex models

able to address particular issues like CO2 fertilization (e.g.,

[12,37]). Terrestrial plant growth is modelled as a function of

NPP, the proportion of NPP that is produced by evergreen or

deciduous leaves, and the fraction of NPP allocated to structural

tissues (Table 5), all of which depend on the local climate. The loss

of plant biomass is determined by leaf mortality rate, which is also

function of the climate, as well as the consumption of biomass by

herbivorous terrestrial organisms (Table 5).

Heterotroph Ecology. Heterotrophs are modelled as co-

horts. Each cohort i is characterized by a functional group

(Table 2), by two traits that do not change through time—body

mass at birth, MJuvenile
i , and body mass at reproductive maturity

MAdult
i (for cohort, i)—and by three state variables whose values

do change through time—the abundance of individuals Ni,(t), the

wet matter body mass of each individual within the cohort Mi,(t),

and a stored reproductive mass of each individual, Ri,(t) (Figure 1).

The values of these state variables are updated each time step

according to the effects of ecological processes (Table 6).

Individuals in each cohort are assumed to interact only with

stocks and cohorts in the same grid cell.

The growth of individual body mass is modelled as follows:

Mi,(tzDt)~Mi,(t)zDMAss
i {DMMetab

i {DM
ReproAlloc
i , ð2Þ

Table 3. Settings used for the six model studies conducted in this research article.

Study Description Spatial Extent Length (y) Ensemble Number Output Detail

1 Grid-cell numerical analyses Four 1u61u focal grid cells (Table 4) 1,000 10 Biomass and abundance densities
by functional groups

2 Grid-cell individual- and
community-level predictions

Four 1u61u focal grid cells (Table 4) 100 1 Detailed individual-level process
diagnostics

3 Grid-cell community-level
predictions at empirically
observed locations

Fourteen 1u61u grid cells at
locations where ecosystem structure
has been empirically estimated
(Table S3)

100 10 Biomass and abundance densities
by functional group

4 Global predictions Global grid of 2u62u cells extending
from 65uN to 65uS in latitude and
from 180uE to 180uW in longitude

100 1 Biomass and abundance densities
by functional group

5 Effects of dispersal on marine
trophic structure

Global grid of 2u62u cells in the
marine realm only extending
from 65uN to 65uS in latitude and
from 180uE to 180uW in longitude

100 1 Biomass and abundance densities
by functional group

6 Effects of biomass turnover
rates on marine trophic
structure

Grid cell M1 (Table 4) 100 10 Biomass and abundance densities
by functional group for simulations
with differing biomass turnover
rates.

doi:10.1371/journal.pbio.1001841.t003

Table 4. Descriptions and coordinates of the focal grid cells for which detailed numerical-, individual-, and community-level model
simulations were made.

Cell Number Cell Description Latitude Longitude Location

T1 Terrestrial:tropical, aseasonal 0uN 32.5uE Southern Uganda

T2 Terrestrial:temperate, seasonal 52.5uN 0.5uE Central England

M1 Marine: low productivity, aseasonal 225.5uS 2119.5uW South Pacific Ocean

M2 Marine: high productivity, seasonal 42.5uN 245.5uW North Atlantic Ocean

doi:10.1371/journal.pbio.1001841.t004
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where DMAss
i is the total biomass assimilated as food, which is the

sum of the biomasses assimilated through herbivory and preda-

tion, DMAss,Herb
i and DMAss,Pred

i , respectively; DMMetab
i is mass

lost through metabolism; and DM
ReproAlloc
i is mass lost by

allocation to reproduction (Table 6, see also Figure 1).

Predation and herbivory are modelled using a Holling’s Type

III functional response, which assumes that the number (or

biomass) of prey (or plant material) eaten by an individual

predator (or herbivore) is a sigmoidal function of prey density (or

biomass density) (Table 6) [38]. The Holling’s functions require

definition of the attack rate and handling time for each predator

(or herbivore) cohort on each prey cohort (or plant stock). Attack

rates of herbivores on plants scaled according to the body mass of

herbivore. Attack rates of predators on animals were derived from

the size-structured model of Williams et al. [39], where the

probability of predation is a Gaussian function around an optimal

prey body size (as a proportion of predator size) (see Equations 35

and 36 in Text S1) estimated from large empirical datasets on

feeding relationships [40]. This size-structured model is an

extension of the long-standing niche model [41] but could be

replaced with other predator–prey interaction models in future

studies if desired. For carnivores and omnivores, the handling time

of each predator on each prey increases linearly with prey body

mass (larger prey take longer to eat) but decreases as defined by a

power-law relationship with predator body mass (larger predators

handle prey more quickly) (Equation 40 in Text S1). For

herbivores, handling time depends on herbivore body mass only

(a decreasing power-law relationship) (Equation 32 in Text S1).

Metabolic costs are modelled as a power-law relationship with

body mass, following Brown [29], using parameter values derived

from field metabolic rates (Table 6) [42]. We assume that each

cohort is active for some proportion of each time step according to

ambient temperature (Equations 41–47 in Text S1). Endotherms

are assumed to thermoregulate, and thus are active for 100% of

each time step. Marine ectotherms are active for 100% of each

time step. Terrestrial ectotherms do not thermoregulate, and thus

are only active for the proportion of each time step during which

ambient temperature was within their upper and lower activity

temperature limits, estimated following Deutsch et al. [43].

Once an individual reaches its adult mass, we assume that

all further mass gained is stored as reproductive potential.

An individual’s reproductive potential mass is incremented as

follows:

Ri,(tzDt)~Ri,(t)zDM
ReproAlloc
i {DR

ReproEvent
i , ð3Þ

where DR
ReproEvent
i is the potential reproductive biomass lost by

each individual of cohort i through reproductive events (Figure 1).

Reproductive events occur when an individuals’ stored reproduc-

tive potential reaches a threshold proportion of adult mass

(Table 6). During reproductive events, iteroparous organisms

devote all of their stored reproductive potential mass to producing

offspring; semelparous organisms devote all of their stored

reproductive potential mass, and also a proportion (Equations

50–52 in Text S1, Table S2) of their adult mass.

The number of individuals in each cohort is incremented as

follows:

Ni,(tzDt)~Ni,(t){DNMort
i {

X
k

(DNPred
k,i ), ð4Þ

Table 5. Summary of how autotroph ecological processes are modelled (for full details, see Text S1 and Table S2).

Process Realm Main Mathematical Functions Eqn(s). Assumptions

Growth Marine The growth of phytoplankton, p, biomass in marine cell, M, during month, m, is given by:

DBGrowth
p ~NPPM

m :j:Acell :dtNPP,

where NPPM
m is a remotely sensed estimate of monthly marine NPP; j converts from

carbon to wet matter biomass; Acell is the grid cell area; dtNPP converts from monthly values
to the model time step.

3 in Text S1 The modelled standing
biomass of
phytoplankton is
capable of generating
the remotely sensed
productivity in any given
time step

Growth Terr. The growth of biomass in autotroph stock, l, in terrestrial cell, T, during month, m, is given
by:

DBGrowth
l ~

NPPT
m:Acell :y:dtNPP :(1{fstruct):fLeafMort:fever , ½if l is evergreen�

NPPT
m:Acell :y:dtNPP:(1{fstruct):fLeafMort :(1{fever) , ½if l is deciduous�

( )

where NPPT
m is a remotely sensed estimate of monthly terrestrial NPP; Acell is the grid cell area;

y converts from carbon to wet matter biomass; dtNPP converts from monthly values to the
model time step; fstruct is the fractional allocation of primary production to structural tissue;
fever is the proportion of NPP produced by evergreen leaves at a particular location; and
fLeafMort is the proportion of total mortality that is leaf mortality.

5, 7–19 in Text S1 Annual mean
environmentally
determined NPP is
allocated to months in
the same relative
proportions as that
observed in remotely
sensed NPP data.

Mortality Marine The loss of phytoplankton biomass is given by:

DBMort
p ~Lp,Herbivory,

where Lp,Herbivory is the cumulative phytoplankton biomass consumed through herbivory.

4 in Text S1 Background mortality of
phytoplankton is
negligible compared to
losses from herbivory

Mortality Terr. The loss of biomass from autotroph stock, l, is given by:

DBMort
l ~

dtm,l :mever:Bl,(t):feverzLl,Herbivory ,½if l is evergreen�
dtm,l :mdecid :Bl,(t):(1{fever)zLl,Herbivory ,½if l is deciduous�

( )

where Bl,(t) is the biomass of stock l at time t; mever and mdecid are annual leaf mortality

rates for evergreen and deciduous stocks, respectively; dtm,l converts annual leaf mortality

rates to the model time step; Ll,Herbivory is the cumulative biomass of stock, l, consumed

through herbivory; and fever is the proportion of NPP produced by evergreen leaves at a
particular location.

6, 10–15 in Text S1 Herbivory rates do not
affect plant allocation
strategies and plants do
not have the capacity for
defensive strategies

doi:10.1371/journal.pbio.1001841.t005
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Table 6. Summary of how heterotroph ecological processes are modelled.

Process Main Mathematical Functions Eqn(s). Assumptions

Herbiv. The total biomass assimilated as food by cohort i through herbivory on all
stocks is calculated as follows:

DMAss,Herb
i ~eherb

f :
PNS

k Bk,(t�): 1{e{Fi,k :Dtd :tf :zf ,(t)
� �

,

where eherb
f is the fractional herbivore assimilation efficiency for the functional group,

f, to which cohort i belongs; Bk,(t� ) is the biomass of stock k at time t* when herbivore

cohort i acts; Dtd is the length of the model time step in days; tf is the proportion of
the time step for which functional group f is typically active; zf tð Þ is the proportion of

the time step that is suitable for a cohort of functional group f to be active; and Fi,k

the instantaneous rate at which stock k is eaten by an individual from herbivore cohort
i is determined by:

Fi,k~

ai,k :
wherb,f :Bk,(t� )

Acell

� �2

1z
PNS

l
ai,l :

wherb,f :Bl,(t�)

Acell

� �2

:Hi,l

,

where ai,k is the effective rate at which an individual herbivore searches its environment in
hectares per day, and which is assumed to scale linearly with herbivore body mass; wherb,f

is the proportion of the current biomass of stock k that is experienced by cohort i; Bk,(t� )

is the biomass of stock k at time t* herbivore cohort i acts; Acell is the area of the cell; Hi,l is
the time taken for an individual in cohort i to handle a unit mass of autotroph stock l.

S23, S24,
S26, S30–S32

Autotroph biomass and
herbivore cohorts are well mixed
throughout each cell.
Each herbivore cohort
encounters a separate fraction,
wherb,f , of the total autotroph

biomass available.

Predation The total biomass assimilated as food by cohort i through predation on all
cohorts is calculated as follows:

DMAss,Pred
i ~e

pred
f :

PNC

j Mj,(t�):Nj,(t�): 1{e{Fi,j :Dtd :tf :zf ,(t)
� �

,

where epred
f is the fractional herbivore assimilation efficiency for the functional group, f, to

which cohort i belongs; Mj,(t� ) is the body mass of an individual of cohort j at time t* when

predator cohort i acts; Nj,(t� ) is the abundance of individuals in cohort j at time t*; and Fi,j ,

the instantaneous rate at which a prey cohort j is eaten by an individual predator from
cohort i, is determined by:

Fi,j~

ai,j :
Nj,(t�)

Acell

� �
:Hi,j

1z
XNS

m
ai,m:

Nm,(t� )

Acell

� �
:Hi,m:Hi,m

,

where ai,j is the effective rate at which an individual predator searches its environment and

successfully kills prey; Nj,(t� ) is the abundance of cohort i at time t* when predator cohort i

acts; Hi,j is the cumulative density of organisms with a body mass lying within the same

predator-specific mass bin as cohort j; Hi,m is the time taken for an individual in cohort i
to handle one individual prey individual in cohort m, per unit time spent searching for food.

S23, S25, S28,
S34–S39

Predator and prey cohorts are
well mixed throughout each cell.
Predator cohorts can experience
all other cohorts sharing the
same cell.
While searching for one prey,
predators can be simultaneously
encountering another prey—that
is, they are not limited by search
time.

Omniv. The total biomass assimilated as food by an omnivore cohort is the sum of the
assimilation terms for herbivory and predation as described above but with Fi,k ,
the instantaneous rate at which stock k is eaten by an individual from an omnivorous
cohort i determined by:

Fi,k~

ai,k :
wherb,f :Bk,(t�)

Acell

� �2

1z
PNS

l ai,l :
wherb,f :Bl,(t�)

Acell

� �2

:Hi,lz
PNS

m ai,m:
Nm,(t�)

Acell

� �
:Hi,m:Hi,m

,

and Fi,j , the instantaneous rate at which a prey cohort j is eaten by an

individual omnivore from cohort i, given by:

Fi,j~

ai,j :
Nj,(t� )

Acell

� �
:Hi,j

1z
PNS

l ai,l :
wherb,f :Bl,(t� )

Acell

� �2

:Hi,lz
PNS

m ai,m:
Nm,(t� )

Acell

� �
:Hi,m:Hi,m

:

Where variables and parameters are as described for herbivory and predation above.

S23–S25, S27,
S29, S30–S32,
S34–S39

As described above for herbivory
and predation.
Omnivores spend a fixed fraction
of each time step engaged in
each of herbivory and predation.

Metab. The metabolic loss of biomass from each individual of cohort i, each with body
mass Mi,(t), was modelled as follows:

DMmetab
i ~ES :

zf ,(t):I
FMR
0,f :exp

{ EA=kB:T
K ,body

� �
: Mi,(t)

� �bmetab,FMR

f

 !

z 1{zf ,(t)

� �
:IBMR

0,f :exp
{ EA=kB:T

K ,body

� �
: Mi,(t)

� �bmetab,BMR

f

 !
2
666664

3
777775:Dtd ,

where Mi,(t) is the body mass of an individual in cohort i; ES converts from energy

to biomass; zf ,(t) ; IFMR
0,f and IBMR

0,f are mass- and temperature-independent metabolic

rate constants for field and basal metabolic rates, respectively; EA is aggregate
activation energy of metabolic reactions; kB is the Boltzmann constant; TK,body is

the body temperature of the individual; bmetab,FMR
f and bmetab,BMR

f are body mass

exponents for field and basal metabolic rates, respectively.

S48 Body temperature, TK,body, is
assumed to be 310 K for
endothermic organisms and
equal to ambient temperature
for ectothermic functional
groups.
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where DNMort
i is the number of individuals of cohort i lost to

nonpredation mortality, and
P

k (DNPred
k,i ) is the total number of

individuals of cohort i lost through predation, summed over all

predator cohorts k as outlined above (Figure 1). We model three

sources of nonpredation mortality: a constant proportional rate of

background mortality, which applies to all individuals; starvation

mortality, which is applied according to how much body mass has

been lost compared to the maximum body mass ever obtained

by an individual; and senescence mortality, which increases

exponentially after maturity with a functional form similar to the

Gompertz model (e.g., [44,45]) (Table 6). Note that abundance

only ever decreases within a cohort. New individuals generated

through reproduction produced new offspring cohorts (see below)

(Equations 52–54 in Text S1). For computational efficiency, once

the number of cohorts exceeds a user-specified, computationally

tractable threshold, a number of pairs of cohorts equal to the

excess are merged together. On merging, the biomass of one of the

cohort pair is converted into an equivalent number of individuals

of the other cohort in the pair (Equations 68–69 in Text S1). The

cohort pairs identified for merging are those lying closest together

in continuous trait space, and belonging to the same functional

group (Equation 67 in Text S1).

Individuals were exchanged among the grid cell via three types

of dispersal: (1) random diffusive dispersal of newly produced

(juvenile) cohorts, (2) active dispersal of individuals determined by

the degree of starvation experienced, and (3) advective-diffusive

dispersal driven by ocean currents (in the marine realm only)

(Table 6). Dispersal occurred via the movement of whole cohorts,

Table 6. Cont.

Process Main Mathematical Functions Eqn(s). Assumptions

Reprodn. The biomass allocated to reproduction for cohort i is modelled as:

DM
Re proAlloc
i ~max 0, Mi,(t)zDMAss

i {DMMetab
i {MAdult

i

� �� 	
,

where DMAss
i is the total biomass assimilated as food; DMMetab

i is mass lost through

metabolism; MAdult
i is the body mass at which an individual of cohort i reaches

reproductive maturity.
A reproductive event was assumed to occur when the following threshold condition
was met:
Mi,(t� )zRi,(t� )

MAdult
i

wb,

where MAdult
i is the mass at which an individual of cohort i reaches reproductive

maturity; Ri,(t� ) is the stored reproductive potential biomass of each individual in

cohort i at the current time; b is the threshold value for accumulation of reproductive
potential biomass.

S49–S54 Semelparous organisms can
allocate a fraction of their adult
mass to reproductive events.

Mortality The instantaneous rate of senescence mortality was modelled as:

mse~lse:exp
tpm=tbm

� �
,

where lse is the instantaneous rate of senescence mortality for a cohort at the point of
maturity; tpm is the time that it took for the cohort to reach maturity; tbm is the time since
the cohort reached maturity.
The instantaneous rate of starvation mortality is given by:

mst~
lmax

1zexp{ Mi,(t� ){qst:M
max
i



fstM

max
i

� � ,

where lmax is the maximum possible instantaneous fractional starvation mortality rate; qst

determines the inflection point of the logistic function describing the ratio of the realised
mortality rate to the maximum rate; fst is the scaling parameter for the logistic function
describing the ratio of realised mortality rate to the maximum rate; Mmax

i is the maximum

body mass ever achieved by individuals in cohort i.
The instantaneous rate of background mortality, mbg, was modelled as a constant value.

S55–S58 There is no senescence mortality
applied to cohorts that have not
reached maturity.

Dispersal Three types of dispersal were included in the model, two of which—diffusive
natal dispersal and responsive dispersal—applied across all realms, whereas advective
dispersal applied in the marine realm and to planktonic size
organisms only.
Diffusive natal dispersal modelled the characteristic dispersal distance of each cohort as a
function of body mass as follows:

di~ndiffusive:
Mi,(t� )

M
disp
ref

 !odisp

,

where ndiffusive is the dispersal speed of an individual of body mass equal to the dispersal

reference mass M
disp
ref ; odisp dispersal distance body mass exponent. Active dispersal in adults is

attempted if intracohort density of adult individuals is below a mass-related density threshold:

Ni,(t� )


Acell

v
b

responsive
density

.
MAdult

i
,

or if the proportion of body mass lost in a time step exceeds a starvation threshold:
Mi,(t� )



MAdult

i
vbresponsive

bodymass ,

where the betas represent those thresholds.
The final, advectively driven dispersal is applicable solely to planktonic organisms in the
marine realm and modelled using the two-dimensional advective vector at that time step
and location, with an additional diffusive component of random direction and length.

S59–S61 Cohorts are spread
homogeneously across grid cells.
Cohorts disperse in entirety not
as fractions.
The diffusive dispersal of
immature organisms is assumed
to represent them searching for
new territory.

Note that the same processes apply in the terrestrial and marine realms. For full details, see Text S1 and Table S2.
doi:10.1371/journal.pbio.1001841.t006
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such that cohorts remained intact. This was necessary numerically

to keep the number of cohorts manageable. We carried out some

targeted simulations to explore the effects of allowing cohorts to

split on dispersal, and found that could have quantitative effects,

but does not fundamentally alter dynamics (Figure S1). Assump-

tions and functional forms about dispersal, and numerical schemes

to implement them, are another potentially important area for

future research.

When the model was applied to a specific grid cell in isolation,

dispersal into or out of the grid cell was not modelled.

Emergent Properties
The properties of individuals and communities that we present

below are ‘‘emergent’’; that is, they are not prescribed, but instead

emerge through time as a result of the large number of interactions

that take place between individual organisms (approximated

as cohorts). As a result of these interactions, life histories of

individuals are formed over time and can be tracked, and com-

munities and ecosystems of individuals self-assemble. Moreover,

the dynamics of any one grid cell are affected by the exchange of

individuals with other grid cells, which occurs due to dispersal.

Thus macroscale predictions (e.g., over the generation length of an

individual cohort, across functional groups, or across entire

ecosystems) emerge from microscale biological mechanisms. The

macroscale predictions differ for ecosystems in different climates,

but only because the microscale biology is sensitive to the climate.

Similarly, the macroscale predictions differ between the land

and sea, but only because microscale biology differs between land

and sea. We compared these emergent properties to empirical

data.

Model Simulations and Comparison to Data
We carried out four distinct types of simulations for different

assessments of model capabilities (Table 3).

Terrestrial grid cells were seeded with two autotroph stocks,

deciduous and evergreen, as detailed above, and marine grid cells

were seeded with a single phytoplankton stock. Grid cells were

seeded with around 1,000 cohorts each, with 112 cohorts in each

of nine functional groups in the terrestrial realm and 100 cohorts

in each of 10 functional groups in the marine realm. Juvenile and

adult body masses of cohorts were drawn at random from a

prespecified range (Table 2), and initial abundance was scaled

negatively with initial body mass to provide reasonable initial

densities (see Text S1 for full details).

Detailed numerical analyses were conducted on four focal grid

cells (Study 1, Table 3) to investigate ecosystem dynamics over

longer time scales. These simulations were used to check for the

persistence of key community components (autotrophs, herbivores,

carnivores, and omnivores), and to determine the typical time

scales for the dynamics to reach some form of equilibrium. These

Table 7. The major development needs for the Madingley Model organised by development category.

Category Development Need

Data 1. Source individual organism-level data with which to constrain ecological processes such as mortality from disease and environmental
disturbance, reproductive behaviour, dispersal behaviour, and activity rates in response to environmental or food stress.
2. Gather information on local community structure to evaluate community-level predictions, such as total biomass of functional or trophic
groups, whole communities, individual size distributions for entire communities in the terrestrial realm, and biomass fluxes through ecosystems.
3. Collect data detailing ecosystems across space and through time to evaluate emergent ecosystem-level properties—for example, latitudinal
or longitudinal transects of biomass and/or abundance, total biomass and/or abundance within a region, and changes in ecosystem structure in
response to environmental change through space and/or time.
4. Assemble data on quantified interaction networks for communities with which to compare the individual-level interaction networks predicted
by the model.

Ecology 1. Include detritivores as a functional group, including the ecological processes that link detritivores to the organic matter inputs from the
ecosystem and cycle that processed organic matter back to form inputs for the primary producers of the system, as well as representing
detritivore-based food chains.
2. Resolve sub-grid-cell habitat structure and organismal preferences within that structure that will likely lead to patterns of interactions among
organisms that violate the well-mixed assumption, for example, by providing refugia for prey: in forests for instance, canopy-dwelling predators
encounter canopy-dwelling prey more often than expected, but ground-dwelling prey less often than expected.
3. Incorporate an explicitly resolved, mechanistic model of phytoplankton dynamics with two-way linking between phytoplankton and
zooplankton.
4. Incorporate a three-dimensional spatial structure in the oceans with a temporally and spatially varying mixed-layer and deep chlorophyll
maxima
5. Represent nonphytoplanktonic coastal NPP (seagrass beds or coral reefs) in order to more realistically capture biodiverse and productive
coastal ecosystems.
6. Capture varying organismal ecological stoichiometry to account for biochemical limitations on performance and also to being able to explore
biogeochemical cycling through entire ecosystems; useful starting points include ecological stoichiometric [112] and dynamic energy budget
[113] concepts.
7. Simulate freshwater ecosystems in addition to terrestrial and marine, and source necessary datasets to constrain ecological parameters and
evaluate outputs.
8. Introduce the concept of intelligent behaviour—for example, directed dispersal (e.g., along a gradient of resources), hibernation and stasis
strategies, or complex predator–prey and herbivore–plant interactions

Methods 1. How does underlying behaviour feed up to mathematical representations of ecological functions? For example, how does the intelligent
behaviour of predators and prey affect the Hollings’ functions employed to model this interaction?
2. Analysis of the model framework to identify analytical solutions for emergent properties such as size distributions or trophic structure.
3. Study the implications of the numerical methods employed in the model such as the time step of ecological processes and the cohort
approximation.
4. Implement a variable time-scale method wherein smaller, more metabolically rapid organisms have a faster time step [14], which may stabilise
the marine realm and will be needed to implement a fully coupled dynamic and mechanistic phytoplankton model.
5. Formally constrain the model against data (data needs are described above) in order to rigorously select the most appropriate assumptions,
functional forms, and parameter values.

doi:10.1371/journal.pbio.1001841.t007
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analyses used the same climatological time series per year to

remove the effects of interannual environmental variation. For

each focal grid cell, we ran 10 model simulations for 1,000 y at a

monthly time step. To test the effect of the cohort-merging regime

on modelled dynamics, we repeated the simulation ensembles for

each focal grid cell with the threshold number of cohorts at which

merging is activated set at 500, 1,000, 5,000, and 10,000 cohorts

and for a shorter period of 100 y.

Additional detailed simulations were carried out for the focal

grid cells over a 100-y period to generate highly resolved

predictions of emergent ecosystem properties at two levels of

biological organisation: individual and ecosystem level (Study 2,

Table 3).

We compared the properties of individual organisms with

empirical data. Importantly, none of these properties were defined

in the model as parameters, but rather they emerged as a result of

the ecological interactions among individuals. The predicted

relationship between body mass and growth rates was compared to

estimates for reptiles, mammals, birds, and fish [46–48], and the

relationship between body mass and time to reach maturity to

estimates for invertebrates, reptiles, mammals, birds, and fish [49–

57] (where necessary body masses were estimated from body

lengths using relationships in [58–61]). The predicted relationship

between body mass and mortality rates was compared with data

for invertebrates, mammals, birds, and fish, taken from a single

study [62]. The predicted relationship between body mass and

lifetime reproductive success was compared with data for

mammals, birds, and a few insect species [63–71]. Of these

emergent properties, the growth rate of organisms derives most

closely from the functional forms and input parameters. Specif-

ically, growth rate could theoretically be a simple sum of food

assimilation rates under conditions of saturating prey density

minus metabolic costs. To test whether this was the case, we

calculated the theoretical growth rate for organisms of a range of

body masses under these conditions.

We compared our novel predictions of complete ecosystem

structure in two grid cells (T1 and M1) (Table 4) to empirical data:

the biomass density of large herbivores with an estimate for

Uganda [72], and the predicted herbivore to autotroph biomass

ratios with average observed ratios for similar ecosystems [73]. We

further compared the modelled relationships between body mass

and population density with empirical estimates derived from fish

assemblages [74,75].

To test the ability of our model to capture broad-scale patterns

in the basic trophic structure of ecosystems, we compared our

model predictions (Study 3, Table 3) to empirical estimates from

the same dataset used to calculate the global average trophic

structure ([73]; see above), but this time using specific values for 14

sites for which we could identify the spatial location (Table S3).

This dataset is the most geographically wide-ranging dataset on

ecosystem structure that we are aware of, including sites in both

the terrestrial and marine realms.

We also generated model outputs at a global scale (Study 4,

Table 3). These were used in two ways: firstly, to investigate the

mechanisms giving rise to variation in ecosystem structure by

assessing the relationship between trophic structure and produc-

tivity in the model along large gradients of autotroph productivity

in both terrestrial (along a meridional transect from the low

productivity Saharan desert to high productivity Congo Basin

tropical forest region) and marine (along a meridional transect

from low productivity Antarctic waters to high productivity East

Atlantic upwelling zones) realms; and secondly, to make novel

predictions of as-yet unmeasured global properties (e.g., latitudinal

gradients in total biomass) and to compare to other modelled

estimates of total biomass and density at a global scale [76]. We

also compared modelled global average ratios of herbivore to

autotroph biomass with the average ratios observed in the same

dataset that we used to test the predictions made by individual cells

[73]. Finally, we investigated how modelled marine ecosystem

structure responded to mechanisms that have been proposed to

cause inverted trophic biomass pyramids, such as dispersal [77],

turnover rate of autotrophs, and turnover rate of consumers [77–

79]. To do this, we simulated the global marine realm with no

dispersal permitted between grid cells (Study 5, Table 3) and the

effects of reducing the turnover rate of biomass through the

ecosystem (Study 6, Table 3).

Results

Grid Cell: Dynamics
For the 1,000-y simulations (Study 1), model dynamics

converged rapidly (,100 y) to dynamic equilibria for all 10

replicates in all four focal grid cells (Figure 2). Autotrophs,

herbivores, omnivores, and carnivores persisted in all simulations.

The dynamics of total biomass by functional group differed

markedly among the four grid cells. Terrestrial grid cells were

dominated by autotroph biomass and, among heterotrophic

organisms, by herbivores, with lower biomasses of omnivores

and carnivores. Marine grid cells, in comparison, had much lower

biomasses of autotrophs, and omnivorous and carnivorous

organisms were more dominant. Unsurprisingly, the seasonal grid

cells in both the terrestrial and marine realms (Figure 2B and 2D)

exhibited much greater fluctuations in biomasses within years,

particularly for lower trophic levels. The high-productivity marine

grid cell exhibited large-amplitude, high-frequency variations in

zooplankton abundance. Biomass dynamics were robust to the

choice of the threshold number of cohorts at which to activate

merging above a threshold of 1,000 cohorts (Figure S2).

Grid Cell: Individuals
The power-law relationships between body mass and the

properties of individual organisms that emerged from the model

were generally consistent with empirical data (Figure 3). For

growth rates and times taken to reach reproductive maturity, the

modelled and empirical values were very similar, although the

slope of the relationship between predicted growth rates and body

mass was steeper. In absolute terms the predicted growth rates

tended to be higher and the predicted times to maturity tended to

be lower than those observed in the empirical data (Table S4).

Our assumptions about underlying ecological processes, such as

handling times and metabolic rates, place a fundamental limit on

the growth rate of organisms of a given body mass (i.e., the net

growth rate of individuals that are feeding at the maximum rate). If

most individuals attained this maximum, then the growth rates

would not be emergent, so much as defined by the model

assumptions. But this was not the case. The emergent relationship

between body mass and growth rate was not a simple function of

maximum possible food assimilation and metabolic costs: mod-

elled growth rates were typically one-tenth of theoretical

maximum model growth rates and showed large variation for

any given body mass (Figure S3). This variation resulted from the

many other factors that affected growth rate, most notably the

abundance and body masses of potential prey and predators

competing for the same prey.

Predicted mortality rates showed a negative power-law

relationship with body mass (Figure 3C), qualitatively consistent

with empirical data, although the relationship was generally

shallower and absolute rates were higher (Table S4). Finally,
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predicted reproductive rates in the terrestrial realm showed a weak

positive power-law relationship with body mass, broadly consistent

with empirical estimates (Figure 3D, Table S4), whereas predicted

reproductive rates in the marine realm were weakly negative.

Predicted reproductive rates were substantially more variable than

the empirical data (Figure 3D).

Grid Cell: Community
For the four focal grid cells, terrestrial ecosystems exhibited a

pyramid of biomass across the different trophic levels (Figure 4A),

which is widely accepted to be present in terrestrial systems [80].

The predicted herbivore biomass as a proportion of producer

biomass (0.98%) was consistent with empirical terrestrial estimates

(median value = 0.93%) (Table S5) [73]. However, predicted

biomass of large-bodied herbivores was four to six times higher

than estimated from a field study [72]. Consistent with current

opinion and observations [78,81–84], marine ecosystems exhibited

an inverted pyramid of biomass structure [73,82], with the highest

biomasses in the highest trophic levels (Figure 4C). Marine systems

exhibited relatively faster flow rates of productivity from autotrophs

to higher trophic levels compared with terrestrial ecosystems—and

at rates much higher than those estimated to date (Figure 4A and

4C) [85]. Predicted herbivore biomass as a proportion of producer

biomass for the marine grid cells was much higher than in terrestrial

ecosystems (63%), and of a similar magnitude to empirical estimates

(median value = 52%) (Table S5) [73].

Expressed as abundance rather than biomass, and consistent

with theoretical expectations [86,87], trophic pyramids were not

inverted in either realm: that is, communities contained a greater

number of herbivores than carnivores (Figure S4).However,

omnivores were more abundant than herbivores, by a factor of

3 in the terrestrial cell and by two orders of magnitude in the

marine cell. This was because the average size of omnivores was

smaller than the average size of herbivores or carnivores.

In both terrestrial and marine grid cells, densities of organisms

showed a negative, approximately log-linear relationship with

individual body mass (Figure 4B and 4D), the slopes of which fell

within observed ranges in fish community assemblages from some

sources (Figure S5) [75], although not from others (Table S6) [74].

Geographical Patterns in Ecosystem Structure Across 14
Sites

Predicted ratios of heterotroph to autotroph biomass were

broadly consistent with empirical estimates in many of the

terrestrial and marine locations (Figure 5). For terrestrial

ecosystems, the model and empirical data were in closest

agreement in the two savannah ecosystems (Figure 5J and N).

For the other ecosystem types—desert, tundra, deciduous forest,

and tropical forest—there was lower agreement between model

and empirical estimates of trophic structure, with modelled

heterotroph to autotroph biomass ratios generally greater than

empirical estimates, sometimes by orders of magnitude (Figure 5).

Figure 2. 1,000-year dynamics for four locations. Medians from ensembles of 10 replicate simulations (lines) and absolute ranges (shaded
regions) of biomass densities for autotrophs (dark green lines), herbivores (light green), omnivores (blue), and carnivores (red) within four 1u61u focal
grid cells; T1, terrestrial aseasonal (A); T2, terrestrial seasonal (B); M1, marine aseasonal (C); and M2, marine seasonal (D) (Table 4). The temporal
dynamics in these metrics emerges from underlying ecological processes that affect a large number of cohorts within each grid cell. Insets zoom in
on medians for the last 5 y of the simulations, demonstrating the seasonal variability in each cell.
doi:10.1371/journal.pbio.1001841.g002
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Modelled ecosystems in the marine realm generally showed

closer agreement with empirical estimates than in the terrestrial

realm. However, in both Santa Monica Bay, San Francisco

(Figure 5A), and the Swartkops estuary in South Africa (Figure 5F),

median modelled herbivore to autotroph biomass ratios were three

orders of magnitude larger than empirical estimates.

Trophic Structure Along Productivity Gradients
The structure of both marine and terrestrial ecosystems showed

marked changes along a gradient of increasing NPP (Figure 6).

Marine ecosystems showed increasing biomass for all three

heterotroph types (carnivores, omnivores, and herbivores), and

flat then declining and highly variable autotroph standing biomass

(Figure 6A). Terrestrial ecosystems also showed a trend of

increasing heterotrophic biomass with productivity (Figure 6B).

Carnivores increased in biomass with productivity more steeply

than for other trophic levels, and were entirely absent from the

lowest productivity desert ecosystem. In the most productive

terrestrial ecosystems, carnivores typically had higher biomass

densities than omnivores.

Global Ecosystems
Global patterns of total heterotroph biomass, averaged across

the final year of the simulation (Figure 7A), were similar to

patterns of primary productivity (Figure S6). In the marine realm,

our modelled estimate of median heterotroph biomass density was

167,147 kg km22, approximately 7–30 times greater than previ-

ous modelled estimates, which range from 5,500–25,000 kg km22

[76,88–90]. However, a recent empirical study into mesopelagic

fish biomass suggests that some fish biomass densities are likely to

be an order of magnitude higher than these previous estimates

[90] and so our prediction is plausible. Global median ratios of

herbivore to primary producer biomass estimated by the model

were 0.8% for terrestrial and 189% for marine ecosystems,

compared to 0.93% and 52% for empirical estimates (Table S5)

[73]. Our modelled estimate of median total terrestrial hetero-

troph biomass density was 151,089 kg km22, a prediction which,

as far as we are aware, has never been made previously.

In the marine realm, high heterotroph biomass is predicted in

upwelling systems and areas of high annual productivity (e.g., the

North Atlantic). In the terrestrial realm, predicted heterotroph

biomass was highest in naturally forested areas and lowest in

deserts. There was no clear latitudinal gradient of biomass density

in either system, but latitudinal variability was substantially greater in

the terrestrial realm. At subtropical latitudes in the northern

hemisphere in the terrestrial realm, there was a band in which

carnivores had higher biomass density than omnivores, whereas

elsewhere omnivores had greater biomass density. This switch in the

relative dominance of omnivores in the northern hemisphere

coincided with a decline in mean herbivore biomass density. No

Figure 3. Comparison of emergent life history metrics with empirical data. Empirical (black) and emergent model (grey) relationships
between body mass and (A) growth rate, (B) maturity, (C) individual mortality rates, and (D) lifetime reproductive success. These life history metrics
are not part of the model definition. Rather, they emerge from underlying ecological processes such as metabolism and feeding (see main text). Life
history metrics were sampled from 100-y model runs for the four focal grid cells (Table 4). Individual mortality rates are estimated as the inverse of
lifespan, and because the minimum simulated lifespan is one model time step (1 mo), estimated individual mortality rates were bounded at 12.
doi:10.1371/journal.pbio.1001841.g003
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discernible decline in mean herbivore biomass densities was observed

at subtropical latitudes in the terrestrial southern hemisphere.

Not all grid cells conformed to the pattern of inverted biomass

pyramids in the marine realm and noninverted biomass pyramids

in the terrestrial realm. Out of all terrestrial cells modelled, 9%

were predicted with more omnivore than herbivore biomass and

46% with greater carnivore than omnivore biomass (Figure S7).

Conversely in the marine realm, 12% of cells had less herbivore

than autotroph biomass, 10% of cells had less omnivore than

herbivore biomass, and 0.4% of cells had less carnivore than

omnivore biomass (Figure S7). The spatial extent and frequency of

cells in the marine realm with noninverted pyramids was

significantly higher when dispersal was prevented from occurring

(Figures S8 and S9). There was also evidence that noninverted

trophic structure was more likely when the turnover rate of

phytoplankton was lower and when the rate and efficiency with

which matter is transferred through the system were reduced

(Figure S10).

Figure 4. Community-level emergent properties. Community-level properties—(A, C) biomass pyramids and (B, D) body mass–density
relationships across all cohorts belonging to each trophic level—emergent from the model for an example terrestrial (A, B) and marine (C, D) grid cell
(grid cells T1 and M1 from Table 4). Results are from the final year of a 100-y model run. Dark green represents autotrophs, light green herbivores,
blue omnivores, and red carnivores. In (A) and (C), standing stocks of biomass are indicated by the widths (after log-transformation) and numbers
within the boxes; curved arrows and percent values represent the biomass transferred among or within trophic levels from herbivory and predation,
as a proportion of the standing stock of the source of each flow; dashed arrows and percent values represent NPP of autotrophs as a proportion of
the autotroph standing stock.
doi:10.1371/journal.pbio.1001841.g004
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Discussion

We have shown that it is possible to derive global predictions

about the emergent properties of ecosystem structure and function

from a GEM based on processes of, and interactions among,

individual organisms, without any model-imposed constraints on

those properties.

Stability of Emergent Dynamics
The model reached a dynamic steady state in all grid cells, with

the persistence of all trophic levels, which is expected in the

absence of perturbation [91]. Real ecosystems are not expected to

exhibit such stable dynamics because they are subject to numerous

interannual environmental fluctuations and perturbations. These

were not incorporated for this study, but could be in the future.

Figure 5. Global heterotroph:autotroph biomass ratios. Comparisons of modelled (open) and empirical (filled) heterotroph to autotroph
biomass ratios in marine (A–F) and terrestrial (G–N) environments (Table S3). Green squares are herbivore to autotroph ratios, blue triangles are
omnivore to autotroph ratios, and red diamonds are carnivore to autotroph ratios. Modelled ratios are medians from 10 simulations, and vertical lines
are 1 standard deviation over these simulations. Empirical ratios are individual estimates or, where more than one estimate was available, the median
of these with sample sizes of H (n = 5), K (n = 2), L (n = 2), and N (n = 3), and vertical lines indicate maximum and minimum empirical estimates.
Comparison locations are shown on a map of the predicted ratio of herbivore to autotroph biomass constructed from the global simulation (Study 4,
Table 3).
doi:10.1371/journal.pbio.1001841.g005
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The global simulations (which included dispersal) converged to

equilibria with similar characteristics to the focal grid cells,

although with higher biomass densities. The higher biomass must

have been a result of dispersal, as this is the only difference

between the focal-cell simulations and may be owing to a rescue

effect from neighbouring grid cells. Nonetheless, the similarity of

the simulations with and without dispersal provides support for the

use of isolated focal grid cells in more detailed studies.

One form of instability in the dynamics was the large temporal

variation in biomasses in the high-productivity, seasonal marine

grid cell. Plankton and zooplankton are known to exhibit marked

biomass fluctuations, but the modelled variation was much

greater, and has a different temporal signature (chaotic variation

within the productive season, whereas real cycles are repeatable

year to year). This appears to be an artefact of the long time step

used, allowing massive unconstrained changes in biomass over a

single time step. Model simulations carried out using a daily time

step (only feasible over shorter time periods and for single grid cells

due to the computational demand) produced substantially more

stable dynamics. However, the mean predicted biomass was

Figure 6. Ecosystem structure along productivity gradients. Variation in emergent ecosystem structure along productivity gradients in the
marine environment (A) from the Southern Ocean to the West African Coast and in the terrestrial realm (B) from the Saharan Desert to the Congolian
Forests. Transect locations are presented on the maps set into each panel. Dark green circles correspond to autorotroph biomass, light green squares
correspond to herbivore biomass, blue triangles to omnivore biomass, and red diamonds to carnivore biomass. Broad biogeographic regions are
roughly distinguished using dashed vertical lines.
doi:10.1371/journal.pbio.1001841.g006
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similar between simulations using different time steps, suggesting

that most of the properties of our results are robust. Nevertheless,

future research is needed into numerical and computational

methods for more appropriately simulating small organisms in

GEMs (see Table 7 and Text S2).

Emergent Life Histories and Trophic Structure
Many aspects of the life history of individuals emerge from the

underlying ecological processes and interactions with other

organisms. For example, growth rates are determined by a

combination of food assimilation rates and metabolic losses, which

themselves depend on the abundance and properties of the other

individuals at the location, and are also constrained by the

maximum possible rate of assimilation and environmentally

determined metabolic rate. Modelled growth rates varied widely

among cohorts, between the maximum and minimum theoreti-

cally possible rates (Figure S3), but showed good correspondence

with observed values (Figure 3A). Predicted mortality rates were

much higher than empirically observed rates, especially for larger

organisms (Figure 3C). This may reflect a mismatch with the data,

as discussed below; in this case, empirical mortality rates were

observed in laboratory conditions in the absence of predation

mortality. Comparing the empirical data and model predictions at

a higher level of resolution, for example within functional groups

Figure 7. Emergent global-level ecosystem properties. Properties emergent from the model after a 100-y global (65uN to 65uS) simulation
using a grid-cell resolution of two degrees. (A) The spatial distribution of annual mean heterotroph biomass density; breaks in the colour scheme
were based on quantiles in the data. (B, C) Latitudinal gradients in biomass density; solid lines represent means for each trophic level, and shading
represents the range of values across all longitudes in each latitude band.
doi:10.1371/journal.pbio.1001841.g007
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or biomes, might help us to better diagnose discrepancies in the

future.

Growth rates were slightly faster and times to maturity slightly

shorter than those from observation. Modelled rates of biomass

transfer calculated for the two focal grid cells were higher than

empirically observed rates, particularly in the marine realm

(Figure 4) [85]. At least in part, this discrepancy may result from

a bias in the data toward larger organisms, leading to empirical

estimates underestimating real biomass flow rates.

Similarly, the negative log-linear relationship between individ-

ual body mass and organism density is consistent with ecological

theory [92], although uni- [93,94] or multimodal [95,96] relationships

have been observed. The modelled slopes were shallower than

empirical estimates for a log-linear relationship, which again might

indicate that turnover rates in the model were overestimated, causing

greater suppression of smaller organism abundance and higher

abundance of larger organisms than in real ecosystems.

Another difference between the model and data was that the

modelled biomass of large-bodied herbivores was several times

higher than observations [72]. Modelled ratios of herbivore to

autotroph biomass were also higher than empirical estimates in

most cases, especially for terrestrial ecosystems. There are three

potential explanations for this. The first is that herbivores, like

predators, are eating too efficiently in the model, which might

result from incorrect functional forms or missing processes. The

second explanation is that because the available data are extremely

sparse, the data are thus potentially not representative of the

system. Thirdly, human impacts might have reduced large

herbivore biomass in the empirical data compared to the

undisturbed ecosystem assumed in these simulations of the model.

The closer match between modelled and empirical trophic

structure for marine and savannah ecosystems, compared to

forests, might be because these ecosystems conform much better to

the assumption that individuals are well mixed. This assumption

implies that herbivores can find all plant material and predators

can find all prey. In all ecosystems, but most obviously in forests,

many leaves are physically out of reach of many herbivores, and

many prey are able to find refuge from predation. This may act to

slow down biomass turnover in forests in comparison to the ocean

and savannas, in a way that cannot be captured by a model that

assumes complete mixing within a grid cell. On the other hand,

the discrepancy could also be caused by incomplete empirical

data. It is easier to estimate whole-ecosystem properties in

savannas (where animals tend to be highly visible) and in the

ocean (which can be trawled with nets) compared with forests.

Alternatively, the terrestrial plant model might be inaccurately

capturing the allocation of productivity to structural or nonstruc-

tural matter at these specific forest sites. However, this appears less

likely, as the allocation function of this model has been rigorously

constrained using a global dataset, and evaluation shows the model

predicts well for this property [36]. We note, however, that at

finer, site-level scales, plant allocation strategies will certainly be

more heterogeneous and will certainly be different from the larger

scale average predicted by the global model.

It is important to note that differences between the marine and

terrestrial realms were not imposed on the model as top-down

limits on the structure of ecosystems but rather emerged from

individual-scale ecology. A necessarily different set of representa-

tive functional groups was defined for the marine environment

compared to the terrestrial environment, but all functional groups

in the model followed the same fundamental ecological functions.

The only other encoded differences between marine and terrestrial

cohorts were the proportion of total autotroph biomass available

for consumption by a given herbivore cohort, the different optimal

prey body sizes for predators, and the assumption that marine

ectotherms are not thermally restricted in their capacity to

function. The primary cause of the much lower ratio of herbivore

biomass to autotroph biomass in the focal terrestrial cells versus in

the oceans was the allocation by terrestrial plants of primary

productivity to structural tissues, which are inedible to all

herbivores in the model (Figure S11). This assumption probably

made it more likely that terrestrial cells would exhibit a

conventional pyramid of biomass structure. However, the model

predicted considerable variation in the shape of the trophic

biomass pyramid across terrestrial and marine cells, including an

inverted structure in some terrestrial cells and a noninverted

structure in some marine cells (Figure S7).

Emergent Global Patterns: Model Results and Predictions
The modelled global estimates of biomass density represent the

first attempt to assess the scaling of ecosystem properties from

individuals to communities at a global level, and to apply a general

ecological modelling methodology consistently across both the

marine and terrestrial realms.

Some of these properties have been estimated previously in

specific locations, but none have been estimated globally using

mechanistic models (although marine animal biomass and biomass

densities have been predicted mechanistically [76,88,89]). In

addition, we have calculated emergent properties that are, as far as

we are aware, unprecedented (Table 8), and we discuss these

below.

Heterotroph Biomass and NPP. At a global scale, the

spatial pattern of heterotroph biomass was broadly consistent with

observed NPP [97], which is unsurprising, as NPP is the basal

resource in all of the modelled ecosystems. However, the

relationship between primary productivity and heterotroph

biomass was not simple: a given level of primary productivity

could result in a wide range of heterotroph biomass (Figure S6A–

D). This variation arises from differences in climate, which lead to

differences in biomass allocation to different plant tissues and to

variation in animal metabolic rates and levels of activity. The

predicted peak in terrestrial heterotroph biomass densities

observed in locations with intermediate levels of NPP is also likely

to result from these factors; for example, plants in the most

productive areas allocate a greater proportion of biomass to

structural tissues, whereas plants in intermediate productivity

ecosystems such as grasslands have a greater relative allocation to

nonstructural tissues. Autotroph biomass was also influenced by

herbivory, as demonstrated by removing all heterotrophs from the

model and representing mortality of plants through herbivory

using a constant loss term (Figure S6E and F). This experiment

suggests the impact of herbivory on plants varies significantly

across the world, indicating the potential importance of explicitly

considering herbivores in carbon cycle models, such as DGVMs,

or models of ocean biogeochemistry, which is not done at present.

Exploring the impacts of heterotrophs on carbon cycling and

predicted carbon dynamics is an important avenue of research for

future development of GEMs.

Emergent Structure and Productivity. Modelled variation

in trophic structure along gradients of productivity supported

theoretical expectations that the NPP of systems will determine the

length of trophic chains [9,10,98]. In low-productivity terrestrial

systems, there is insufficient autotrophic biomass propagating to

higher trophic levels to support carnivores, whereas in high-

productivity ecosystems, carnivore biomass is greater than

omnivore biomass. In the marine realm, autotroph biomass

decreased with increasing primary productivity beyond NPP of

40,000 kg km22 y21, inconsistent with expectations from the
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trophic release hypothesis (Figure 6B) [11]. The model predicts for

marine ecosystems that with increasing primary productivity

herbivore biomass increases and carnivore biomass, as a propor-

tion of total biomass, decreases. For terrestrial ecosystems,

herbivore biomass increased to around 40,000 kg km22 and then

decreased, whereas the carnivore biomass proportion decreased

only after around 550,000 kg km22. The relationship predicted

for marine ecosystems is in agreement with the general findings

from available empirical data on changes in trophic structure

associated with changes in productivity, derived from freshwater,

intertidal, and reef fish communities [99–103]. However, our

results indicate that a qualitatively different relationship between

trophic structure and productivity appears to exist in the terrestrial

realm. There are additional factors that influence modelled

community structure along productivity gradients that will require

detailed investigation in the future, including (i) seasonality, which will

vary among different modelled locations with similar productivity; (ii)

climatic differences, which might affect the composition of autotroph

biomass in terrestrial ecosystems; and (iii) dispersal regimes.

Emergent Latitudinal Patterns of Community Stru-

cture. Predictions of latitudinal variation in community struc-

ture (as shown in Figure 7B and 7C) give an insight into the

mechanistic basis of these patterns at a global scale. On land, there

was greater variation in the biomass density of all trophic groups,

both latitudinally and longitudinally, compared to in the oceans

(Table 8). The greater variation in terrestrial biomass densities was

likely driven by greater environmental heterogeneity in the

terrestrial realm and the greater range and speed of dispersal

processes (e.g., advective dispersal) in the oceans. For example,

both temporal [104,105] and spatial variability [106] in environ-

mental temperature is higher on land versus the ocean.

In the mid to high latitudes of the terrestrial northern

hemisphere, omnivorous organisms account for greater biomass

than carnivores. However, in equatorial latitudes and extending to

30uS, carnivorous organisms constituted a greater fraction of the

total ecosystem biomass than omnivores (Figure 7C and Table 8).

The equatorial and low southern hemisphere latitudes correspond

to more stable environmental conditions [106] compared with mid

to high northern latitudes. Therefore, the model appears, in the

terrestrial realm, to be selecting for generalist feeding strategies in

more variable environments, while favouring specialism where the

environment is more stable.

Mechanisms Giving Rise to Inverted Marine Trophic

Structure. The model showed that dispersal of organisms plays

an important role in the spatial extent and frequency of inversion

of marine trophic structure (Figures S8 and S9), which is consistent

with the hypothesis that the import of allocthonous organic matter

supports relatively higher heterotrophic biomass in oligotrophic

freshwater systems, which has been postulated previously but not

investigated in detail [77]. Furthermore, we show that noninverted

trophic biomass structure is more frequent when the turnover rate

of phytoplankton is reduced and when the rate and efficiency of

biomass transfer through the ecosystem is lower (Figure S10), in

agreement with current theory [77–79]. The generality of inverted

trophic pyramids in the marine realm remains unknown, but

there are numerous examples of herbivore biomass being larger

than producer biomass in ocean environments [73]. Inversion at

the top of the trophic pyramid has apparently been observed in

some near-pristine reef habitats [84], though this may simply

be an overestimation artefact of the visual census approach

used [107].

Future Model Development
In developing the first global GEM, our strategy was to start

with a ‘‘simple’’ model that can be improved later. To keep it

simple, we excluded numerous aspects of ecology—some of which

are captured by existing models of particular ecosystems [14,15].

Adding this ecology back into our model would, arguably, make it

more realistic. Then again, attempting to include all known

ecological processes occurring in every ecosystem around the

world would not only be completely impractical but would also be

excessive for most of the purposes for which a GEM is intended.

Thus, we would expect the set of ecological processes represented

in GEMs to evolve over time and to depend on the ways in which

GEMs come to be used. Moreover, there are several other

important ways in which our model could be improved, as

outlined in Table 7, and discussed below.

Future Model Development: Ecology. The physical envi-

ronment is currently represented very simply in the model. For

example, in reality, variation in habitat structure within grid cells

will alter interactions between organisms. And a fully integrated

and explicitly resolved mechanistic model of phytoplankton is

required in future iterations of the model, as is representation of

nonphytoplanktonic coastal autotrophs (e.g., seagrass beds or coral

Table 8. Novel predictions and datasets needed to evaluate them.

Prediction Data to Evaluate

Median terrestrial total heterotrophic biomass density is predicted to be
151,089 kg km22 and maximum terrestrial heterotrophic biomass densities are
found in ecosystems with intermediate levels of NPP (Figure 7A and Figure S6A)

Empirical or modelled information on the total biomass of heterotrophic
organisms in a sample of terrestrial biomes, from which median terrestrial
biomass density could be inferred

Median marine total heterotophic biomass density is predicted to be 167,147 kg km22,
approximately 7–30 times greater than previous modelled estimates

Empirical information on the total biomass of heterotrophic organisms in
a sample of marine locations, from which median marine biomass density
could be inferred

Omnivorous organisms account for greater biomass than carnivores in low to mid
productivity terrestrial environments, for example in the Saharan desert—Sahelian
savanna transition (Figure 6B), or more widely in the mid to high latitudes in the
northern hemisphere (Figure 7C). At equatorial latitudes and extending to 30uS,
carnivorous organisms constitute greater biomass than omnivores on average

Ecosystem trophic structure or food web structure for low to mid
productivity terrestrial environments in equatorial latitudes and mid
latitudes in both hemispheres

Terrestrial biomass densities vary more than marine biomass densities across latitudes
(Figure 7B and C)

Observations of total biomass contained in trophic groups at a set of sites
within the same latitude band, carried out across a range of latitude
bands. For the terrestrial realm, the band between 20u and 30uN has
potentially substantial latitudinal variation in total biomass.

doi:10.1371/journal.pbio.1001841.t008
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reefs) and detritivores. The detrital loop in particular is important

in ‘‘closing the system.’’ Other ecological processes that should be

incorporated in future iterations of the model include ecological

stoichiometry; intelligent behaviour, such as directed dispersal,

hibernation, and stasis; and complex predator–prey and herbi-

vore–plant interactions (Table 7).

Future Model Development: Data. Robust data-con-

strained parameterisation of the model and rigorous evaluation

of our novel but testable outputs was not possible because the

necessary data were not generally available. Therefore, another set

of developments are needed around the acquisition and collation

of data for use in GEM modelling (Table 8 and Table 7), which

are reflected by the biodiversity informatics community [108].

Future Model Development: Numerical and Math-

ematical Methods. The development of the Madingley Model

was enabled by combination of numerical methods that is, far as

we are aware, novel (e.g., the cohort approach to trait-driven

interactions, combined with cohort merging, randomly ordered

updating, the treatment of autotrophs as continuous state

variables, and exponential differencing of loss rates within time

steps; see Text S2 for further examples). Given the novelty of this

modelling paradigm in ecology, at least five areas of development

will be required: detailed analysis and understanding of the

mathematical representations of ecology, analytical tractability of

predicted ecosystem properties, the implications of alternative

abstractions and numerical methods used to implement them, the

infrastructure to allow flexibility in scale, and the infrastructure to

constrain and evaluate the model so that the benefits of additional

components or realism can be assessed objectively (Table 7). In

addition, it would be interesting to explore the approach referred

to as ‘‘parameterization’’ in the biogeosciences modelling commu-

nity—that is, to fit phenomenological relationships to the output of

GEMs, thus allowing approximate versions of them to be run much

more quickly, or within the context of more general ESMs.

Future Model Development: Community. The further

development of GEMs discussed above will be expedited by a

community of researchers improving upon the model presented

here or developing alternative GEMs. We call for such a

community of ecologists, biologists, mathematicians, and comput-

er scientists to form around the GEM concept so that this class of

model can be rapidly advanced to better meet the pressing needs

of conservationists and policymakers. In this spirit, we have

developed our model architecture in such a way that it is relatively

easy to alter the representation of ecological processes and have

made our model code freely available to the community (www.

madingleymodel.org).

Use of GEMs
Our model is the first step towards the development of a more

ecologically refined GEM (and GEMs) that occupies a very

different niche to the more specialised modelling approaches that

have been used to inform biodiversity policy to date, and is more

akin to the global climate models that inform global climate

science and policy [8]. Our GEM necessarily made numerous

simplifying assumptions in order to capture a broad range of

ecological processes and organisms. This nevertheless provides a

new approach to answering important outstanding questions in

ecology and with which to begin to ask entirely new questions—

questions that require an integrated, mechanistic understanding of

whole ecosystems; the connections among them; and their

response to environmental variation and natural or human

perturbations. In the following sections, we briefly discuss how

GEMs could be used to inform ecological science and conservation

policy.

Use of GEMs: Ecology. GEMs will help in the development

of ecological theory. The study of ecology is so broad that most

pieces of ecological research necessarily focus on a small subset,

whether in terms of scale, taxa, or the processes concerned. The

implications of the findings in these disparate research areas for

the longer term and larger scale dynamics of whole communities

and ecosystems are hard to assess. This has led some ecologists to

call for a renewed interest in ‘‘systems ecology,’’ which aims to

study important ecological processes within the context of other

important ecosystem and earth-system processes to enable a better

understanding of the natural environment [109]. Models like ours

provide one way to do this: new ecological findings can be used to

modify the model, or different competing formulations of

ecological theories (e.g., prey density or ratio-dependent predation

functions [110]) can be represented in the model and the results

assessed against known ecosystem structure. By doing so, the

processes of critical importance for ecosystem structure and

functioning could be identified and priorities for development of

new ecological hypotheses or data-gathering determined. Our

preliminary investigations of community trophic structure along

productivity gradients and of the mechanisms giving rise to the

inversion of marine cells illustrate the potential of GEMs in this

regard.

Use of GEMs: Conservation. The simulations presented

here are not directly relevant to conservation decision-making, as

the model currently does not directly include anthropogenic

influences. In principle, a model of this kind could be used to

better inform the management of the world’s ecosystems, in much

the same way that mechanistic ESMs are used to predict and

explore scenarios of anthropogenic climate change [7]. Forcing the

model with time-varying historic or future projections of

environmental variables would provide the kinds of novel and

highly relevant outputs that could enable a mechanistic approach

to conservation decision-making.

By taking a system-level approach, GEMs are uniquely able to

simulate the interacting relationships between various simulta-

neous human pressures (such as climate change, land use change,

and harvesting of wild animals) and various metrics of ecosystem

structure and function, exploring the trajectories derived from

external scenarios of human pressure. For example, they could

predict (1) static measures of ecosystem properties, such as the

variation in the functional traits represented in ecosystems, an

important measure of biodiversity thought to be related to

ecosystem functioning [26]; (2) metrics that are currently used to

monitor the state of ecological systems, such as the total

abundance of large endotherms as an analogue of the Living

Planet Index [111]; (3) metrics relating to focal species, by

examining the fate of organisms with similar traits to those species,

although important species-specific factors may not be captured

that way; and (4) dynamic ecosystem measures, such as stability

(the magnitude of temporal variation in ecosystem properties) or

resilience (predicted time to recover from a perturbation). A

unique advantage of GEM-like models relative to statistical

modelling approaches is their capacity to model completely novel

perturbation scenarios—that is, perturbations for which there are

no data, experiments, or observations.

The structure of this type of model also allows for a wide set of

anthropogenic perturbations to be considered simultaneously. For

example, such models will be able to simulate how whole

ecosystems respond to, and feed back upon, the effects of changes

in atmospheric carbon dioxide concentrations on plants; altered

climate on all organisms and ecological processes; harvesting of

animals, land-use change, and harvesting of vegetation; invasive

species; and toxic pollutants. The effects of these disparate
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perturbations could be measured using a common set of metrics.

Considering these impacts together in a GEM should allow for

much more holistic understanding, and management, of the

world’s ecosystems, which will make GEMs a powerful tool for

bodies such as the Intergovernmental Platform on Biodiversity and

Ecosystem Services.

Conclusions
We have developed the first General Ecosystem Model (GEM)

that synthesizes fundamental aspects of ecological theory, to

model, simulate, and predict how the structure and function of

ecosystems at multiple scales emerges from the biology and

interactions of individual organisms. Our model matches a broad

range of empirical data well, to a first approximation. Where it

departs from either observations or expectations, it does so in ways

that afford interesting avenues for future ecological research,

future model development, and empirical data collection. It also

provides a set of novel predictions that can be independently

assessed. We anticipate that this will be the beginning of a long-

term exploration of GEMs, and we call upon ecologists, biologists,

mathematicians, and computer scientists to join in creating a

modelling community surrounding GEMs that can catalyse the

development of more realistic, sophisticated, yet better understood

models of ecosystems worldwide. Our hope is that GEMs will form

the basis of new science in ecology and, in particular, science that

proves actionable to those charged with conserving the biosphere

on which we all depend.

Supporting Information

Figure S1 Cohort dispersal effects on autotrophic and
heterotrophic biomass. The difference between fracturing

cohort and whole cohort dispersal expressed as a percentage of the

whole cohort dispersal value. Percentage differences were

calculated over a 10610 grid of 1u61u marine grid cells extending

from 30u to 40uN and 40u to 30uW, using median and annual

mean biomasses from an ensemble of 10 simulations for both

fracturing cohort and whole cohort dispersal. Negative values

therefore indicate lower biomass in the fracturing cohort ensemble

median, whereas positive values indicate the opposite.

(TIFF)

Figure S2 Cohort number effects on long-term means of
trophic-level biomass. Medians from the mean over the last

5 y of ensembles of 20 replicate simulations (points) and absolute

ranges (error bars) of biomass densities for autotrophs (dark

green lines and dark green squares), herbivores (green lines and

green circles), omnivores (blue lines and blue triangles), and

carnivores (red lines and red diamonds). Ensembles of replicates

were run with a threshold of 500, 1,000, 5,000, or 10,000

cohorts per grid cell for terrestrial cell T1 and marine cell M1

(Table 4).

(TIFF)

Figure S3 Emergent model growth rates compared to
theoretical maximum rates. (A) Absolute emergent model

growth rate (grey crosses and diamonds) relationship with body

mass compared with empirical (black points) and theoretical

maximum (red line). (B) The relationship between emergent model

growth rate as a fraction of theoretical maximum growth rate (grey

open circles) and body mass for each trophic level in terrestrial or

marine cells. Modelled emergent individual-level properties are

sampled from 100-y model runs for the four focal grid cells

(Table 4).

(TIFF)

Figure S4 Trophic abundance pyramids. Community-

level abundance pyramids across all cohorts belonging to each

trophic level emergent from the model for an example of terrestrial

and marine grid cell (grid cells T1 and M1 from Table 4). Results

are from the final year of a 100-y model run. Light green

represents herbivores, blue represents omnivores, and red

represents carnivores. Total abundance densities (1,000 s individ-

uals/km2) are indicated by the widths (after log-transformation)

and numbers within the boxes.

(TIF)

Figure S5 Comparison of model predicted with empir-
ical normalised body mass spectra (NBS). Frequency

distribution of the slope of NBS from [75] with model-derived

NBS slope values, calculated following Sprules and Munawar

[114], for carnivores (red), omnivores (blue), and herbivores

(green). Triangles correspond to slopes for the low productivity,

aseasonal marine cell (M1, Table 4) and circles to the high

productivity, aseasonal terrestrial cell (T1, Table 4).

(TIF)

Figure S6 Relationships between predicted biomass
densities and NPP. The global relationship between total

heterotrophic biomass and NPP split between terrestrial and

marine realms (A). The global relationship between the ratio of

herbivore to autotroph biomasses and NPP split between

terrestrial and marine realms (B). The relationships between

different trophic levels and NPP across terrestrial (C) and marine

(D) environments. The relationship between autotroph biomass

and NPP across terrestrial (E) and marine environments (F) with

heterotrophs modelled explicitly ‘‘full’’ and constant proportional

autotroph herbivory loss rates of 0.25, 0.5, and 0.75.

(TIFF)

Figure S7 Frequency distributions of trophic biomass
structure. Frequency distributions of log-transformed ratios of

trophic-level biomasses in terrestrial grid cells (brown) and marine

grid cells (blue), for H:A = herbivore to autotroph, O:H = omni-

vore to herbivore, C:H = carnivore to herbivore, and C:O = car-

nivore to omnivore biomass ratio. Red dashed lines indicate where

the biomass ratio equals 1.0, which means equality of the two

trophic-level biomasses.

(TIFF)

Figure S8 Spatial extent of un-inverted marine trophic
structure for the bottom two trophic levels: herbivores
and autotrophs. Spatial locations (green points) of un-inverted

herbivores to autotroph trophic structure (i.e., where there is less

herbivore than autotroph biomass) in (A) a simulation where

dispersal was permitted (Study 4, Table 3) and (B) when dispersal

is not modelled.

(TIFF)

Figure S9 Frequency distribution of marine trophic
structure in the absence of dispersal. Frequency distribu-

tions of log-transformed ratios of trophic-level biomasses in marine

grid cells with dispersal (upper set of histograms—Study 4, Table 3)

and marine grid cells without any dispersal modelled (lower set of

histograms). H:A, herbivore to autotroph; O:H, omnivore to

herbivore; C:H, carnivore to herbivore; C:O, carnivore to

omnivore biomass ratio. Red dashed lines indicate where the

biomass ratio equals 1.0, which means equality of the two trophic-

level biomasses.

(TIFF)

Figure S10 The effects of turnover rates and trophic
transfer efficiencies on marine trophic structure. Box
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and whisker plots of the predicted ratios of trophic levels (H:A,

herbivore to autotroph; O:H, omnivore to herbivore; C:H,

carnivore to herbivore; C:O, carnivore to omnivore biomass

ratio) for ensembles of 10 replicate simulations with different

model assumptions investigating the mechanisms giving rise to

inverted marine trophic biomass structure: N, the full model for a

single grid cell; H, herbivore assimilation efficiency reduced to

20% (from 60–70% omnivore–herbivore); HP, herbivore and

predator assimilation efficiency reduced to 20% (from 60–80%

omnivore–carnivore); A, attack rates of herbivores and predators

decreased by two orders of magnitude; AHP, combined reduction

of attack rates, herbivore assimilation, and predator assimilation as

above. Dark bars indicate median values, boxes the interquartile

ranges, and whiskers the maximal range. Upper panels correspond

to grid cell M1 and lower panels to grid cell M2 (Table 4).

(TIFF)

Figure S11 Community-level properties for cell T1 with
all edible plant matter available for herbivory. Trophic

pyramid and size distribution spectra for focal cell T1 with the

value of parameter wherb,f equal to 1 for terrestrial herbivores,

which means that each terrestrial herbivore cohort experiences

100% of the edible plant matter in the grid cell when it is eating.

The release of this parameter does not affect the low herbivore to

primary producer ratio for terrestrial communities. Here, the ratio

is 1.0%, marginally higher than that calculated for the same

location using a value for wherb,f of 10% (Figure 4).

(TIFF)

Table S1 Environmental data sources. External global

environmental data sources used within the model. Units represent

those used within the Madingley model, not those of the original

source data. a Environmental variables were long-term/multi-

decadal average values.

(DOCX)

Table S2 Model parameters and their values.
(DOCX)

Table S3 Empirical estimates of trophic-level biomass-
es in globally widespread ecosystems in both marine
and terrestrial environments. Notes: 1. Consider only the

pelagic producers. Assume that dissolved organic carbon (DOC)

and suspended particulate organic carbon (POC) are available to

the pelagic community. Do not include benthic suspension feeders.

Assume micro-zooplankton are herbivores (as defined in our

model). For omnivores and carnivores, assume that the proportion

of biomass that is supported originally by pelagic primary

production is equal to the proportional rate of consumption of

pelagically derived foods relative to consumption of foods from all

sources. 2. From Table 12.2 (plants taken as above ground

vascular + Moss + Algae + Lichens) of Chapin et al [115].

3. Herbivore biomass taken from [73]. 4. Producer and herbivore

biomasses from [73]. 5. Producer biomass of 9,999 g C m-2 comes

from Figure 8 of Frangi and Lugo [116]. Montane palm floodplain

forest; herbivore biomass taken from [73].

(DOCX)

Table S4 Comparison of emergent individual-level
properties from the model with observations. The slopes

and intercepts of the relationships between predicted properties

and body mass compared to empirical data. The probability that

the slope and intercept of the predicted relationship were different

from those for the empirical data was calculated as the t statistic of

linear models fitted to combined model and empirical data for

each emergent property using a categorical factor to indicate a

model or empirical datum. The probability that the t statistic for

the model including the categorical factor indicates the signifi-

cance of the difference.

(DOCX)

Table S5 Summary statistics of empirical community
herbivore and primary producer biomasses. Summary

statistics, derived from [73], for those ecosystem types most closely

representing the ecosystems within the two grid cells shown in

Figure 3. PB, primary producer biomass; HB, herbivore biomass.

Median herbivore biomass in temperate and tropical grassland

ecosystems is 52.3% of that in communities of marine phyto-

plankton, whereas median primary producer biomass is 57 times

larger in the terrestrial compared to the marine ecosystem.

(DOCX)

Table S6 Comparison of abundance–density slopes
predicted by the model with observed slopes. Abun-

dance–density relationships predicted by the model (for cells T1

and M1, Table 4) compared with observations. Empirical

abundance–density relationships were derived from Jennings et

al. [74]. The reported total biomass versus body mass relationships

were converted to abundance versus body mass relationships, by

dividing the total biomass in each mass bin by the central mass of

that mass bin, which can be approximated as subtracting 1 from

the slope of total biomass against body mass.

(DOCX)

Text S1 Technical and mathematical details of the
model.

(DOCX)

Text S2 Model time step effects.

(DOCX)
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