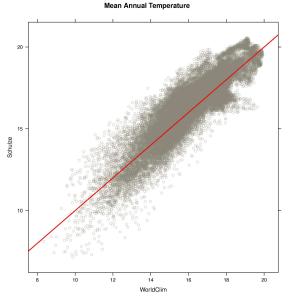
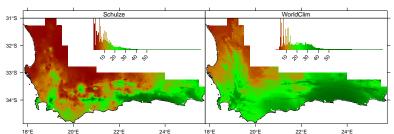

Quantifying uncertainty in daily weather interpolations: a Bayesian framework for developing climate surfaces

Adam M. Wilson

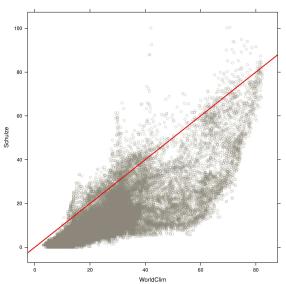
roduction Methods Matter Satellite Data Summary


Climate data for South Africa: methods matter

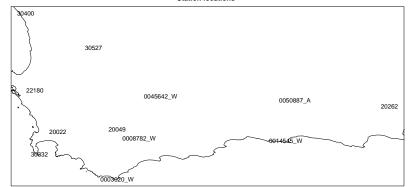
- Schulze, RE. (2008) South African Atlas of Agrohydrology and Climatology
- Hijmans, RJ., et. al. (2005) International Journal of Climatology, 25(15):1965–1978

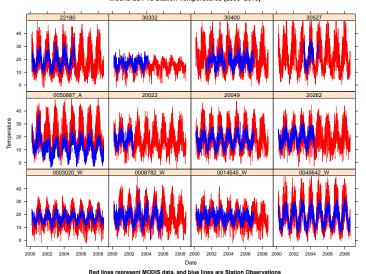


Climate data for South Africa: methods matter


Climate data for South Africa: methods matter

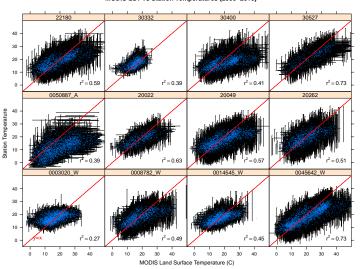
Mean December Precipitation


Climate data for South Africa: methods matter

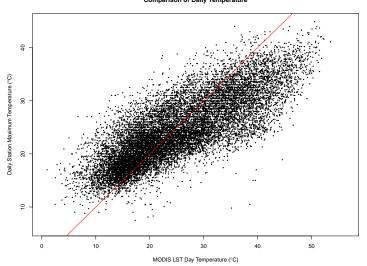


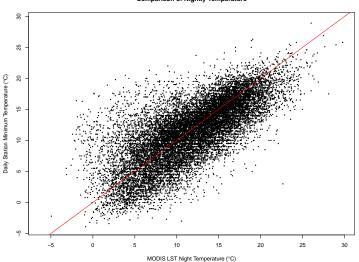
A comparison of MODIS LST with selected station data from South Africa

Station locations

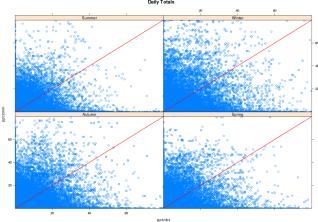

MODIS LST vs Station Temperatures (2000-2010)

ked lines represent MODIS data, and blue lines are Station Observations

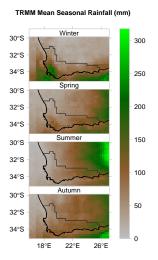

MODIS LST vs Station Temperatures (2000-2010)


Grey lines represent range, blue points are mean temperatures, and red line is y=x

Comparison of Daily Temperature



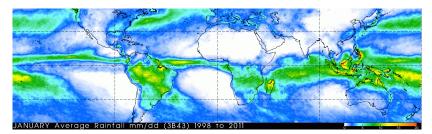
Comparison of Nightly Temperature



TRMM Precipitation

A comparison of TRMM daily precipitation with selected station data from South Africa

TRMM Precipitation

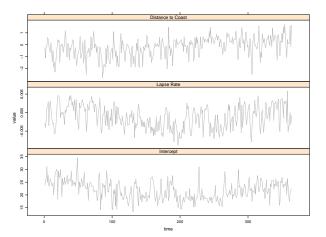

Seems to capture seasonal patterns much better than daily

MODIS and TRMM data

Long-term monthly means:

- probably more accurate than day-by-day (especially TRMM)
- better 'calibration' of satellite-station relationship
- reduce problem of clouds (though not everywhere)
- useful by itself (a better WorldClim)

Incorporating long-term means: Climate Aided Interpolation


For each day:

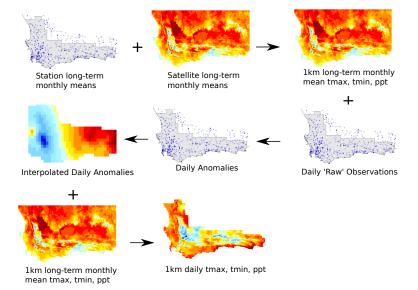
- 1. Generate long term monthly means from station and satellite data
- subtract long-term monthly mean from daily station observations
- 3. interpolate the anomolies
- 4. add anomaly surface back on to long-term means

Hunter & Meentemeyer, 2005; Willmott, & Robeson, 1995

Day-by-Day fitting

Fitted regression coefficients from day-by-day co-kriging on raw station temperatures over one year.

Incorporating long-term means: Climate Aided Interpolation


Advantages

- anomalies smoother and easier to interpolate
- don't need to estimate lapse rate, rain shadows, etc. each day
- altitudinal distribution of stations less problematic
- incorporate satellite data for entire period 1970-2010 (assuming stationarity)
- fewer problems with missing satellite data (clouds)

Disadvantages

 assume within-month spatial patterns (i.e. lapse rates) are constant (don't take direct advantage of daily satellite data)

Climate-aided Interpolation: The Workflow

Selecting Tile Size

Probably infeasable to interpolate a single day's values for globe, must break into tiles.

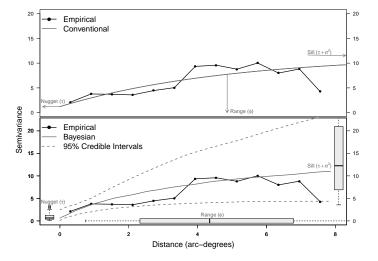
Factors to consider:

- 1. smaller is probably better for computation
- 2. larger is probably better for interpolation

Possible steps to select tile size

- 1. Compute semivariogram using moving window over globe to quantify spatial decay
- 2. Select smallest window above the range

The Workflow


Generating daily climate anomalies

$$P_{\text{anomaly}} = \frac{P_{\text{daily}}}{P_{\text{monthly}}} \tag{1}$$

and temperature:

$$T_{\text{anomaly}} = T_{\text{monthly}} - T_{\text{daily}}$$
 (2)

Climate-aided Bayesian Kriging

Semivariograms for maximum temperature on January 3, 2009

Climate-aided Bayesian Kriging

The full Likelihood:

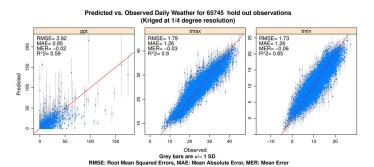
$$L(\beta, \sigma^2, \phi|Y) \propto (\sigma^2)^{-\frac{n}{2}} |R_y(\phi)|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(y - X\beta)'(R_y(\phi))^{-1}(y - X\beta)\right\}$$
(3)

The posterior distribution:

$$pr(\beta, \sigma^2, \phi|y) = pr(\beta, \sigma^2|y, \phi)pr(\phi|y)$$
 (4)

Day-by-day 'Bayesian krige' 1 using geoR package.

Climate-aided Bayesian Kriging

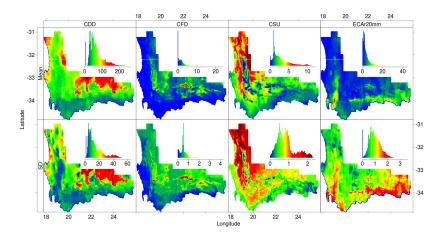

Computationally demanding. 20 years of interpolations requires:

- >1 year processor time
- \sim 7TB of storage (though maybe not all at once)

Summary

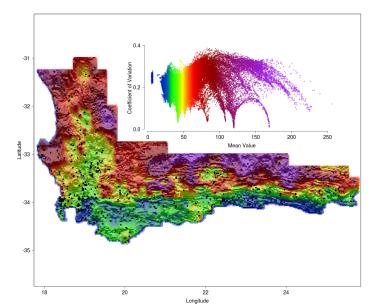
Validation

Successful prediction of dry days: 97.2% and wet days: 65.9%.

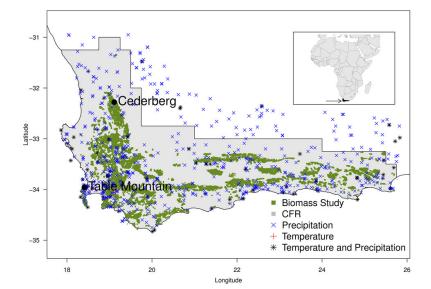

Climate metrics

Quantity	Description	Plant performance ele- ments	Data	Functional form
MinT	Annual minimum temper- ature	Germination, growth	t _{min}	min(t _{min})
MaxT	Annual maximum tem-	Germination, growth, Seedling mortality	t _{max}	max(t _{max})
FD	Frost days	Seedling mortality	tmin	$\sum_{t \in \text{year}} (t_{min_t} < 0^{\circ} C)$
CFD	Longest consecutive pe- riod with frost	Seedling mortality	t _{min}	$\max(\text{consecutive}(t_{min} < 0^{\circ} C))$
GDD	Growing Degree Days	Growth	tmax	$\sum_{t \in \text{year max}} (t_{min_t} - 10.0)$
CSU	Longest heat wave (> 35°C)	Seedling mortality	t _{max}	$\max(\text{consecutive}(t_{max} > 35^{\circ}C))$
CDD	Annual maximum consec- utive dry days	Growth, Seedling mortal- ity	ppt	max(consecutive(ppt <2mm))
ECAr20mm	Very heavy precipitation days	Growth, Seedling mortal- ity	ppt	Number of days with ppt >20mm
SDII	Simple daily precipitation intensity index	Growth, Seedling mortal- ity	ppt	mean(ppt) where ppt >2mm

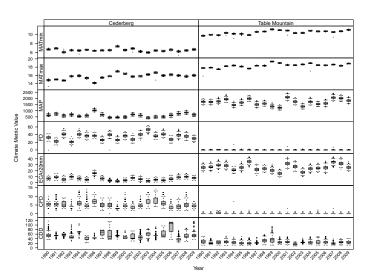
Climate metrics were calculated using 1,000 time series drawn from the posterior samples in each location to result in a posterior distribution that incorporates the uncertainty introduced by the interpolation. Climate metrics were calculated using CDO tools.


troduction Methods Matter Satellite Data **Summary**

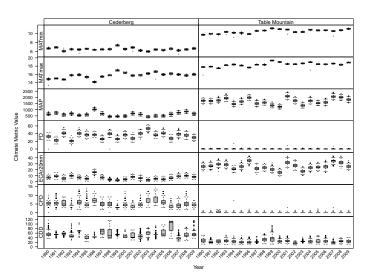
Summary of Climate Metrics


Mean (top row) and standard deviation (bottom row) of the posterior samples for four climate metrics.

Consecutive Dry Days



Comparison of two locations



Comparison of two locations

Comparison of two locations

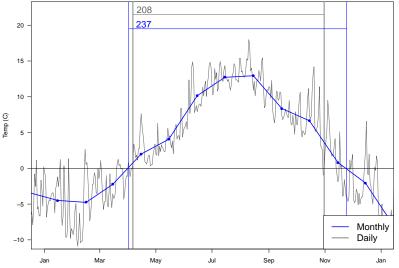
We know what we don't know and we have more relevant metrics = > > <

Summary

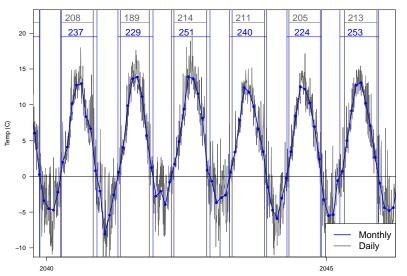
Daily Bayesian interpolations provide:

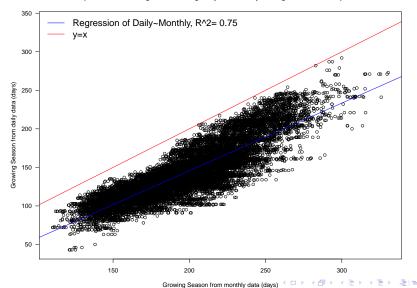
- full accounting for uncertainty
- Posterior distribution for any $f(t_{max}, t_{min}, p_{tot})$ for any location

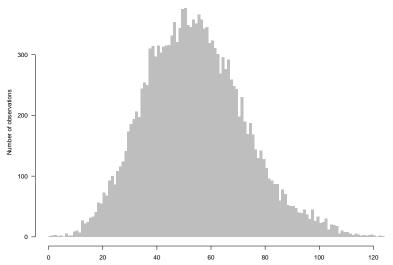
These distributions can propagate the uncertainty through:


- species distribution models
- ecosystem function models
- demographic models

We can now quantify the effects of uncertainty in climate surfaces!


Thanks!


Minimum Temperatures (daily and monthly average) with Growing Season for 1 Grid Cell


Minimum Temperatures (daily and monthly average) with Growing Season for 1 Grid Cell

Comparison of Growing Season using Daily vs. Monthly Average Minimum Temperatures

Difference between Growing Season Length from Daily vs. Monthly Data

Climate Metrics

Quantity	Description	Plant performance ele-	Data	Functional form
		ments		
MinT	"Chill" or annual mini- mum temperature	Germination, growth	Tt	$min_{year}(Tmin_t)$
FD	Frost days	Seedling mortality	T _{min}	Number of days during which Tmin < 0°C
HDD	Heating Degree Days	Growth	T _{max}	$\sum_{t \in \text{year}} \max(T_t - 10.0)$
DLen	Annual maximum consec- utive days with precipita- tion < threshold (1mm)	Growth, Seedling mortal- ity	ppt	max(consecutive(ppt < 1mm))

Table: Climate metrics calculated from the daily data

Next... Climate projections

- Use CMIP3 or CMP5 GCM output
- Calculate anomalies (future daily current monthly means)
- Apply to current high resolution climates
- Calculate metrics of interest

Then, maybe, I'll be able to think about ecology again...