Quantifying uncertainty in daily weather interpolations: a Bayesian framework for developing climate surfaces

Adam M. Wilson
November 16, 2011

Climate data for South Africa: methods matter

Mean Annual Temperature

- Schulze, RE. (2008) South African Atlas of Agrohydrology and Climatology
- Hijmans, RJ., et. al. (2005) International Journal of Climatology, 25(15):1965-1978

Climate data for South Africa: methods matter

Mean Annual Temperature

Climate data for South Africa: methods matter

Climate data for South Africa: methods matter

Mean December Precipitation

MODIS LST

A comparison of MODIS LST with selected station data from South Africa

Station locations

MODIS LST

MODIS LST vs Station Temperatures (2000-2010)

Red lines represent MODIS data, and blue lines are Station Observations

MODIS LST

MODIS LST vs Station Temperatures (2000-2010)

Grey lines represent range, blue points are mean temperatures, and red line is $y=x$

MODIS LST

Comparison of Daily Temperature

MODIS LST

Comparison of Nightly Temperature

TRMM Precipitation

A comparison of TRMM daily precipitation with selected station data from South Africa

Daily Totals

TRMM Precipitation

TRMM Mean Seasonal Rainfall (mm)

Seems to capture seasonal patterns much better than daily

MODIS and TRMM data

Long-term monthly means:

- probably more accurate than day-by-day (especially TRMM)
- better 'calibration' of satellite-station relationship
- reduce problem of clouds (though not everywhere)
- useful by itself (a better WorldClim)

Incorporating long-term means: Climate Aided Interpolation

For each day:

1. Generate long term monthly means from station and satellite data
2. subtract long-term monthly mean from daily station observations
3. interpolate the anomolies
4. add anomaly surface back on to long-term means

Hunter \& Meentemeyer, 2005; Willmott, \& Robeson, 1995

Day-by-Day fitting

Fitted regression coefficients from day-by-day co-kriging on raw station temperatures over one year.

Incorporating long-term means: Climate Aided Interpolation

Advantages

- anomalies smoother and easier to interpolate
- don't need to estimate lapse rate, rain shadows, etc. each day
- altitudinal distribution of stations less problematic
- incorporate satellite data for entire period 1970-2010 (assuming stationarity)
- fewer problems with missing satellite data (clouds)

Disadvantages

- assume within-month spatial patterns (i.e. lapse rates) are constant (don't take direct advantage of daily satellite data)

Climate-aided Interpolation: The Workflow

1km long-term monthly mean tmax, tmin, ppt

1km daily tmax, tmin, ppt

Selecting Tile Size

Probably infeasable to interpolate a single day's values for globe, must break into tiles.

Factors to consider:

1. smaller is probably better for computation
2. larger is probably better for interpolation

Possible steps to select tile size

1. Compute semivariogram using moving window over globe to quantify spatial decay
2. Select smallest window above the range

The Workflow

Generating daily climate anomalies

$$
\begin{equation*}
P_{\text {anomaly }}=\frac{P_{\text {daily }}}{P_{\text {monthly }}} \tag{1}
\end{equation*}
$$

and temperature:

$$
\begin{equation*}
T_{\text {anomaly }}=T_{\text {monthly }}-T_{\text {daily }} \tag{2}
\end{equation*}
$$

Climate-aided Bayesian Kriging

Semivariograms for maximum temperature on January 3, 2009

Climate-aided Bayesian Kriging

The full Likelihood:
$L\left(\beta, \sigma^{2}, \phi \mid Y\right) \propto\left(\sigma^{2}\right)^{-\frac{n}{2}}\left|R_{y}(\phi)\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(y-X \beta)^{\prime}\left(R_{y}(\phi)\right)^{-1}(y-X \beta)\right\}$
The posterior distribution:

$$
\begin{equation*}
\operatorname{pr}\left(\beta, \sigma^{2}, \phi \mid y\right)=\operatorname{pr}\left(\beta, \sigma^{2} \mid y, \phi\right) \operatorname{pr}(\phi \mid y) \tag{4}
\end{equation*}
$$

Day-by-day 'Bayesian krige' ${ }^{1}$ using geoR package.

Climate-aided Bayesian Kriging

Computationally demanding. 20 years of interpolations requires:

- >1 year processor time
- ~ 7 TB of storage (though maybe not all at once)

Validation

Predicted vs. Observed Daily Weather for 65745 hold out observations
(Kriged at $1 / 4$ degree resolution)

RMSE: Root Mean Squared Errors, MAE: Mean Absolute Error, MER: Mean Error

Successful prediction of dry days: 97.2% and wet days; 65.9%.

Climate metrics

Quantity	Description	Plant performance elements	Data	Functional form
MinT	Annual minimum temperature	Germination, growth	$t_{\text {min }}$	$\min \left(t_{\text {min }}\right)$
MaxT	Annual maximum temperature	Germination, growth, Seedling mortality	$t_{\text {max }}$	$\max \left(t_{\text {max }}\right)$
FD	Frost days	Seedling mortality	$t_{\text {min }}$	$\sum_{t \in \text { year }}\left(t_{\min _{t}}<0^{\circ} \mathrm{C}\right)$
CFD	Longest consecutive period with frost	Seedling mortality	$t_{\text {min }}$	$\max \left(\right.$ consecutive $\left(t_{\text {min }}<0^{\circ} \mathrm{C}\right)$)
GDD	Growing Degree Days	Growth	$t_{\text {max }}$	$\sum_{t \in \text { year }} \max \left(t_{\min _{t}}-10.0\right)$
CSU	Longest heat wave (> $35^{\circ} \mathrm{C}$)	Seedling mortality	$t_{\text {max }}$	$\max \left(\right.$ consecutive $\left(t_{\text {max }}>35^{\circ} \mathrm{C}\right)$)
CDD	Annual maximum consecutive dry days	Growth, Seedling mortality	ppt	$\max ($ consecutive $(p p t<2 \mathrm{~mm})$)
ECAr20mm	Very heavy precipitation days	Growth, Seedling mortality	ppt	Number of days with ppt $>20 \mathrm{~mm}$
SDII	Simple daily precipitation intensity index	Growth, Seedling mortality	ppt	mean $(p p t)$ where ppt $>2 \mathrm{~mm}$

Climate metrics were calculated using 1,000 time series drawn from the posterior samples in each location to result in a posterior distribution that incorporates the uncertainty introduced by the interpolation. Climate metrics were calculated using CDO tools.

Summary of Climate Metrics

Mean (top row) and standard deviation (bottom row) of the posterior samples for four climate metrics.

Consecutive Dry Days

Comparison of two locations

Comparison of two locations

Comparison of two locations

Year

We know what we don't know and we have more relevant metrics

Summary

Daily Bayesian interpolations provide:

- full accounting for uncertainty
- Posterior distribution for any $f\left(t_{\max }, t_{\min }, p_{t o t}\right)$ for any location

These distributions can propagate the uncertainty through:

- species distribution models
- ecosystem function models
- demographic models

We can now quantify the effects of uncertainty in climate surfaces!

Thanks！

The need for daily data

Minimum Temperatures (daily and monthly average) with Growing Season for 1 Grid Cell

The need for daily data

Minimum Temperatures (daily and monthly average) with Growing Season for 1 Grid Cell

The need for daily data

Comparison of Growing Season using Daily vs. Monthly Average Minimum Temperatures

The need for daily data

Difference between Growing Season Length from Daily vs. Monthly Data

Climate Metrics

Quantity	Description	Plant performance elements	Data	Functional form
MinT	"Chill" or annual mini- mum temperature	Germination, growth	Tt	$\min _{\text {year }}\left(\operatorname{Tmin}_{t}\right)$
FD	Frost days	Seedling mortality	$T_{\text {min }}$	Number of days during which 1 min $<$ $0^{\circ} \mathrm{C}$
HDD	Heating Degree Days	Growth	$T_{\text {max }}$	$\sum_{t \in \text { year }} \max \left(T_{t}-10.0\right)$
DLen	Annual maximum consecutive days with precipitation $<$ threshold (1mm)	Growth, Seedling mortality	ppt	$\max ($ consecutive(ppt $<1 \mathrm{~mm}$))

Table: Climate metrics calculated from the daily data

Next... Climate projections

- Use CMIP3 or CMP5 GCM output
- Calculate anomalies (future daily - current monthly means)
- Apply to current high resolution climates
- Calculate metrics of interest

Then, maybe, l'll be able to think about ecology again...

