ENVIRONMENTAL LAYERS MEETING IPLANT TUCSON 2012-04-17

Roundup Benoit Parmentier

What I have been doing working on:

- 1) Producing LST monthly mean Python script (with IDRISI API but with GDAL in mind) to calculate:
- monthly mean
- Number of valid observation per day.
- 2) GAM prediction
- Some GAM predictions with interaction terms
- Including monthly mean LST and LC as variables
- Comparing results between models using LST daily mean and monthly mean.
- 3) Kriging and Co-kriging
- Kriging using tmax
- Co-kriging using tmax, Elev_SRTM, Eastness, Northness
- Co-kriging using tmax, LST_monthly

1) LST MONTHLY MEAN PRODUCTION

•Python script (with IDRISI API but with GDAL in mind) to calculate:

- Monthly mean
- Number of valid observation per day.

OREGON- MONTHLY MEAN FOR MONTH 01

mean_month1_rescaled.rst

OREGON- DAILY MEAN FOR DOY 001

mean_day001_rescaled.rst

OREGON-NUMBER OF VALID OBSERVATIONS FOR MONTH 01

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00

OREGON-NUMBER OF VALID OBSERVATIONS FOR DAY 001

mean_day_valid_obs_001_Sum.rst

OREGON- MONTHLY MEAN FOR MONTH 7

mean_month7_rescaled.rst

OREGON- DAILY MEAN FOR DOY 182

mean_day182_rescaled.rst

OREGON- MONTHLY MEAN FOR MONTH 7

mean_month_valid_obs_7_Sum

OREGON-NUMBER OF VALID OBSERVATION FOR DOY 182

mean_day_valid_obs_182_Sum.rst

2)GAM PREDICTION USING LST AND LC

→GAM regressions:

- Some GAM predictions with interaction terms
- Including monthly mean LST and LC in the GAM regression

LAND COVER CONSENSUS CATEGORIES

Table 5. Legend for the 10 aggregated land cover classes and the corresponding classes from the six individual global land cover legends. Modified from (Nakaegawa 2011).

¹I added class 3 to 'forest' since it was missing in original table. The class 2 entry under 'shrub' is probably an error and so is removed. ²GlobCover class assignment needs to be finalized.

³Mosaic is composed of cropland and natural vegetation.

Aggregated Classification class	Class No.	GLC2000 ¹	UMD	MODIS	GlobCover ²
Forest	1	1,2,3,4,5,6,7,	1,2,3,4,5,	1,2,3,4,5,	40,50,60,70,90,100,160,17
		8	6	8	0
Shrub	2	9,10,11,12,14	7,8,9	6,7,9	110,120,130,150
Grass	3	13	10	10	140
Crop	4	16	11	12	11,14
Mosaic ³	5	17,18		14	20,30
Urban	6	22	13	13	190
Barren	7	19	12	16	200
Snow	8	21		15	220
Wetland	9	15		11	180
Water body	10	20	0	17	210

GAM MODELS USED FOR THE ANALYSIS

Using monthly LST mean...

```
mod1<- tmax~ s(lat) + s (lon) + s (ELEV_SRTM)</pre>
```

mod2<- tmax~ s(lat,lon,ELEV_SRTM)</pre>

mod3<- tmax~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC)

mod4<- tmax~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST)

mod5<- tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)

mod6<- tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC1)

mod7<- tmax~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC3)

GAM MODEL USING MONTHLY MEAN LST (mod 4 to 7)

GAM MODEL USING DAILY MEAN LST (mod 4 to 7)

GAM MODEL USING MONTHLY MEAN LST (mod 4 to 7)

GAM MODEL USING DAILY MEAN LST (mod 4 to 7)

RMSE FOR ALL DATES AND MODELS USING MEAN LST DAY

RMSE FOR ALL DATES AND MODELS USING MEAN LST MONTH

MEAN AND MEDIAN COMPARISON OF MODEL RUNS

3)KRIGING AND CO-KRIGING

• Kriging using tmax:

- → Co-kriging using tmax, Elev_SRTM, Eastness, Northness
- → Co-kriging using tmax, LST_monthly

RUN 10: KRIGED AND CO-KRIGED SURFACE FOR DAY 20100902

Tmax Kriging for date 20100902 6e+05 6e+05 5e+05 5e+05 350 4e+05 350 4e+05 300 3e+05 300 3e+05 250 250 2e+05 2e+05 200 200 1e+05 1e+05 0e+00 0e+00 7e+05 1e+05 2e+05 3e+05 5e+05 6e+05 4e+051e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05

Tmax cokriging for date 20100902

tmax~ tmax

tmax~ tmax, ELEV_SRTM, Eastness, Northness

RUN 10: KRIGED AND CO-KRIGED SURFACE FOR DAY 20100902

Tmax Kriging for date 20100902 Tmax cokriging for date 20100902 6e+05 6e+05 5e+05 5e+05 350 4e+05 4e+05 300 300 3e+05 3e+05 250 250 2e+05 2e+05 200 200 1e+05 1e+05 00+90 00+90 1e+05 2e+05 3e+05 4e + 055e+05 6e+05 7e+05 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05

tmax~ tmax

RMSE: 23.19 using 121 observations.

tmax~ tmax,LST,ELEV_SRTM

RMSE: 21.55 using 121 observations.

RMSE USING KRIGING AND CO-KRIGING WITH 30% RETAINED FOR VALIDATION

What's next..?

1) GWR validation and comparison with Kriging

- 2) Influence of sampling on results
- GWR
- Prediction

3) Continue GAM prediction using LST and Land Cover

4) Continue to experiment with Kriging and Co-kriging

5) Producing LST mean using a moving window?

6) Documenting the analysis and think more carefully about the results by reading more about the methods.