CLIMATE INTERPOLATION
MATHEMATICAL NOTES ON METHODS
PART3
Benoit Parmentier

NCEAS, July 22, 2012

Notes assembled during the production of the climate interpolation review.



SPLINES AS SUM OF BASIS FUNCTIONS
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Figure 3.3 A cubic spline is a curve constructed from sections of cubic polynomial joined
together so that the curve is continuous up to second derivative. The spline shown (dotied
curve) is made up of 7 sections of cubic. The points at which they are joined (o) (and th
two end points) are known as the knots of the spline. Each section of cubic has different cocfii
cients, but at the knots it will match its neighbouring sections in value and first two derivative
Straight dashed lines show the gradients of the spline at the knots and the continuous cinve
first and second derivatives at the knots: these illustrate the con
ro second derivative

are quadratics matching the
tinuity of first and second derivatives across the knots. This spline has z
at the end knots: a ‘natural spline’. Note that there are many alternative ways of representin

such a cubic spline, using basis functions: although all are equivalent, the link to the piccewin

cubic characterization is not always transparent.

Another example: A cubic spline basis

A univariate function can be represented using a cubic spline. A cubic spline 11
curve made up of sections of cubic polynomial joined together so that they are con
tinuous in value, as well as first and second derivatives (see figure 3.3). The poinl
at which the sections join are known as the knots of the spline. For a conventional
spline, the knots occur wherever there is a datum, but for the regression splines ol
interest here, the locations of the knots must be chosen. Typically the knots woulil
either be evenly spaced through the range of observed  values, or placed af quantil
of the distribution of unique x values. Whatever method is used, let the knof focation
be denoted by {z} :i=1,---,q—2}.

Given knot locations, there are many alternative, bat equivident, ways of wiltin
down a basis for cubic splines. A simple basis o use, rennlte from the very pencial
approach (o splines that can be found i the books by Walibi CHO90) and Ci (1005
although the basis Tunctions are shightly fntimidating when wittten down cad

link to the defimition of acubie spline given foc e S8 B ether opague). For (h

Wood et al. 2006:124

UNIVARIATE SMOOTH FUNCTIONS 125
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Ktession spline basis (with knot locations ©y = 1/6, x5 = cy = 5/6). The first 5
panels (starting from top left) illustrate the 5 basis functions, bi(x), for a rank 5 cubic spline
basts. The basis functions are each multiplied by a real valued parameter, (3;, and are then
Mimmed to give the final curve f(x), an example of which is shown in the bottom right panel.
My varying the 3; we can vary the form of f(z). See also figure 3.5
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Flgie A5 An alternative ilustration of how a function is represented in terms of cubic spline
BN S tlons. This figure shows the same vank 5 cubic regression spline Im‘\i.vbl/ml is shown
LI LA Dt o this case the basis functions, b, (@), are cach shown multiplied by corre-
MORIng costlictonts (1) (fest five flgures, stardng af top left), Simply summing l/ww.‘ﬁnr\w\

Whis the functlon, (), shosen at bottom vight

Function bases
can be rescaled
by their
coefficients...

There are
constraints at
the knots so
that the
function is
smooth.

Let a interval [0,1] in which we need to approximate a given set of points by a continuous
analytical function: a sum of piecewise polynomials with smooth edges is a candidate....



R RISRCREES SMOOTHING FUNCTION AND EQUIVALENT KERNELS
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{astie and Tibshirani: 1990:21
Mg 2.0, The equivalent kernels for the smoothers in Fig. 2.1. The bin
anoother is omilled, since it resembles the running mean. The arrows
indicate the targel point in cach case. The points are plotted at the pairs
(wy, Soy)

* Smoother scatterplots act on the set
of points from the domain of
prediction by removing details or
noise and generalization locally...

* To smoothing functions we can
associate equivalent kernels that
represent the local effects of bases
functions in a neighborhood around
a particular observation.

“The cubic smoothing spline, because of the implicit ways
it is defined, doesn’t appear to use local averaging.
However, the equivalent-kernel weights in Fig.2.5 show
that it does possess local behavior quite similar to kernels
or local weighted lines. The equivalent kernel is nowhere
nonzero, but it is close to zero far from the target point. “

“One might say, then that a cubic smoothing spline is
approximately a kernel smoother. The smoothing
parameter controls the shape of the kernel or weight
function.

Hastie and Tibshirani, 1990:29.



SPECTRAL DECOMPOSITION OF SMOOTHING FUCTIONS

Hastie and Tibshirani 1990:58
. meeraiNg IN DIETALL * Smoothing functions
| | ! | can studied using eigen
value decomposition.

1 s |
g | |\ | X
g "=,* ‘l"\\ | | \// ‘ / \/ * Figure on the right
® X | | \\ T shows the third and
B \:':?.:mm._." " \f\ \/ﬂ\/ﬁ‘ sixth eigenvectors of a
l smoothing spline

5 10 15 20 25 | l "\ matrix.
order -

The two different spectrum correspond to different values of the smoothing term. Larger smoothing
term A results in eigenvalue spectrum that decays more quickly.

The analysis of a linear scatterplot smoother through an eigenanalysis of the corresponding smoother
matrix is closely related to the study of the transfer function of a linear filter for time series. This

analogy can add insight, so we provide a brief summary here. Consider a time series yt: t=0,+/-1,...
b

s = }_4('};1/:—1- —> Linear smoother

b
Re [L ¢; exp (—iwj)r exp{i(wt + (5)}}.

j=a

See Hastie and Tibshirani 1990:59.



SPECTRAL DECOMPOSITION OF BASIS FUNCTION

SMOOTHING BASES 159

Wgure 4.6 Hlustration of a rank 15 thin plate regression spline basis for representing a smooth
finction of two variables, with penalty order m = 2. The first 15 panels (starting at top
loft) show the basis functions, multiplied by cocfficients, that are summed to give the smooth
wirfuace in the lower right panel. The first three basis functions span the space of functions
thit are completely smooth, according to the wiggliness measure, Jop. The remaining /)fl.s‘is
functtons represent the wiggly component of the smooth curve: notice how these functions

Wood 2006:159

become successively more wiggly.

€x = ax B — Bl o ;
870 o]
sary, since the upper norm otherwi
ie spline is measured by the penal
rst possible change in the shape of

€1 = max OT(E — Ey)d
R = R T

This is the spectral decomposition of a two
dimensional thin plate regression spline
(TPRS). Note that the larger eigenvalues
show three polynomials of first degree
(planes). The eigenvectors show higher
degree of the polynomial terms for smaller
eigenvalue terms...

TPS bases are expensive to calculate (of the O(n3) order) but its basis space can be approximated

using eigenvectors from the spectral decomposition. This is cheaper in terms of operations using
the Lanczos algorithm (O(n%k) operations).



SMOOTHING TERM: A
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Figure 3.8 Penalized regression spline fits to the engine wear versus capacity data, using thive
different values for the smoothing parameter, A.

prs.fit<-function (y, x, xk, lambda)
# function to fit penali
# with knots xk, given smoothin

regr ion spline to x,y data

rameter, lambda.

{ g<-length (xk)+2 # dimension of basis

gth (x) # number of data
reate augmented model matrix
Xa <- rbinj(spi.X(x,xk},mat.sqr:(spl.S(xk))-nqxr(1 imbda) )

yl(ntl): (n+q) ]<-0 # augment the data vector
Im(y“Xa-1) # fit and return penalized regression spline

}

To use this function, we need to choose the basis dimension, ¢, the knot locationy,
273, and a value for the smoothing parameter, A. Provided that q is large enough thal
the basis is more flexible than we expect to need to represent f(z), then neither (I
exact choice of ¢, nor the precise selection of knot locations, has a great deal of
influence on the model fit. Rather it is the choice of A that now plays the crucial role
in determining model flexibility, and ultimately the estimated shape of f(z). In the
following example ¢ = 9 and the knots are evenly spread out over [0,1]. But it iy
the smoothing parameter, A = 10~ which really controls the behaviour of the fitted
model.

xk<-1:7/8 # choose some knots

<-prs.fit (wear, x,xk,0.0001) # fit pen. reg. spline
Xp<-spl.X
plot (x,wear) ; lines (xp, Xp%+%coef (mod.2)) # plot data & spl. fit

+xk) ¥ matrix to map params to fitted values at Xp

By changing the value of the smoothing parameter, A, a variety of models of different
smoothness can be obtained. Figure 3.8 illustrates this, but begs the question, which
value of A is ‘best’?

3.2.3 Choosing the smoothing parameter, A: Cross validation

If A is too high then the data will be over smoothed, and if it is (0o low then the data
will be under smoothed: in both cases this will mean that the spline estimate f will

00 Do prossdbile o A sithle it might be o choose Ao minimize

v the notation /, [Cr) and [, [ () have been adopted for conciseness.
e | unknown, AL cannot be used directly, but it is possible to derive an estimate
FUOA) 1o which is the expected squared error in predicting a new variable. Let

P the model fitted (o all data except ;.. and define the ordinary cross validation

o~ Al )
y { 2
v, ”2‘.”' ui)*
i
i seore results from leaving out cach datum in turn, fitting the model to the re-

i datiand caleulating the squared difference between the missing datum and
iin predicted value: these squared differences are then averaged over all the data.

wibwiituting e i b e,

=Y (- -2 - e+ &

{nce #(c;) = 0,and ¢; and f} *! are independent, the second term in the summation
imishies il expectations are taken:
wiv 1 S Fl=il 2 o2
E(Vo) = —E| Y _(fiT" = )" | +*
i=1
o E ? O
Now, [1 1 &~ f with equality in the large sample limit, so E(V,) = E(M)+0 dls_o
with equality in the large sample limit. Hence choosing A in order to minimize Vo is
| ieasonable approach if the ideal would be to minimize AL. Choosing A to minimize
1., is known as ordinary cross validation.
Ondinary cross validation is a reasonable approach, in its own right, even without a
inean square (prediction) error justification. If models are judged only by their ability
{0 lit the data from which they were estimated, then complicated models are always
clected over simpler ones. Choosing a model in order to maximize the ability to
predict data to which the model was not fitted, does not suffer from this problem, as
lipure 3.9 illustrates.
It is computationally inefficient to calculate V, by leaving out one datum at a time,
snd fitting the model to each of the n resulting data sets, but fortunately it can be

hown that

The smoothing
term controls the
size of the
neighborhood.

Large A correspond
to smoothing
function that are
flatter.

“The averaging is done in neighbourhoods around the target value. There are two main decisions to be

made in scatterplot smoothing:
- How to average the response values in each neighbourhood, and

- How big to take the neighbourhoods.”



B-SPLINE AND P-SPLINES

154 SOME GAM THEORY
be
k-1
P =Y (Bix1— Bi)> =B — 28102 + 205 — 2BaBa + ... + B},
i=1
and it is straightforward to see that this can be written

1 -1 0
= ..
P=p"| 0 1 2 . .|B

Such penalties are very easily generated in R. For example the penalty matrix for 7
can be generated by:

<- diff (diag(k),differences=1)
t (P) %*%P

0n v

Higher order penalties are produced by increasing the differences paramelci
The only lower order penalty is the identity matrix.

P-splines are extremely easy to set up and use, and allow a good deal of flexibility
in that any order of penalty can be combined with any order of B-spline basis, i
the user sees fit. Their disadvantage is that the simplicity is somewhat diminished il
uneven knot spacing is required, and that the penalties are less easy to interprel in
terms of the properties of the fitted smooth, than the more usual spline penalties. Sc
exercises 7 to 9, for further coverage of P-splines.

4.1.5 Thin plate regression splines

The bases covered so far are each useful in practice, but are open to some criticisi

1. Itis necessary to choose knot locations, in order to use each basis: this introduc
an extra degree of subjectivity into the model fitting process.

2. The bases are only useful for representing smooths of one predictor variable

3. Itis not clear to what extent the bases are better or worse than any other basis il

might be used.

In this section, an approach is developed which goes some way (o addressing th
issues, by producing knot free bases, for smooths of any number of predictor, fhal
are in a certain limited sense ‘optimal’: the thin plate regression splines

Thin plate splines

Thin plate splines (Duchon, 1977) are oovery elegant aond general solution o h

problem of estimating o smooth function of oooleipde precietor vaetables, from nol

Other common splines found in the literature
are P-splines and B-splines.

B-SPLINES are another way to represent the
cubic splines.

B-splines are interesting representation of cubic
splines because they are truly local.

B-splines can be written recursively and were
introduced by Boor in 1978. “They were
developed as a very stable basis for large scale
spline interpolation...” Wood et al. 2006:153

P-Splines can be developed from B-splines
(Eilers and Marx 1996).

“P-splines are low rank smoothers using a B-spline basis,
usually defined on evenly spaced knots, with a difference
penalty applied directly to the parameters, 8i. Values...”

P-splines are useful but need to have even spaced knots...



CLIMATOLOGY AIDED INTERPOLATION
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Figure 3. Time senes of spatially integrated mean absolute inlerpolation error (MAE) from cross-vahdation analyses of (1) Willmolt
et al's (1985) interpolations from Jones ef al's yearly station data (dotsed line) () ¢l | My aided | (CAL) again
interpolating with Willmott e1 al (solid hine), and (ui) clmatology alone (mixed d&shod and dotted kne)

differences between the interpolated Legates and Willmott (7)) and Jones et al. (T)) temperatures at station
J, but they also contain information about station biases that mﬂucnc: differences belwacn T,and 7. When
the 47; field is interpolated from the 8T field, it (the 87, field) then contains interpolated bms—conecnon
information; in turn, when the 37, field is added to the estimated T, field, the grid-point estimates
approximate the Jones ef al. station values in quality, albeit at a much higher spatial resolution. It is this
aspect of our somewhat unusual anomaly fields that allows CAI to effectively make use of the inhomo-
geneous—but spatially high-resolution—station records that reside in Legates and Willmott’s climatology.

4.3. Interpolation errors for CAl

Cross-validation was performed (as in section 3.2) for CAI using Willmott er al. (1985) to interpolate
both the 7} and the 57;. Substantial improvements over the simple interpolation results (using only yearly
air temperatures) are apparent (Figure 3). Interpolation errors are reduced by over 50 per cent, and approach
interpolation errors associated with more standard anomaly data (Robeson, 1993). Scatter plots (Figure 4)
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Figure 4 Scatter plots of observed air temperature versus cross-validation csumlu for 1962 using (a) Willmott er al's algorithm
with the yearly station data only and (b) ¢l logi alded imterp {CALL

Willmott and Robeson
1995: CAl has lower cross validation errors
In time with lower variance too.

T(interpolated)= T(climatology)+ T(deviation)

Wilmott 1995 makes the case for the use of higher
quality climatology spatial surface for CAl. He
presents an interpolated surface of mean annual
temperature based on some 18,00 stations from the
Willmott and Legate station database (1990). Such
map can distinguish feature such as the Ethiopian
highlands and the limit in eh Atacama desert and
Andes mountain. When used as basis for
interpolation in CAl it can improved prediction
substantially.

“For many spatial applications, its high spatial
resolution outweights the deleterious effects of variable
averaging periods. Preliminary work work by the
authors using precipitation data suggests that
interpolation errors (when using traditional
interpolation methods) are greater when station record
from different averaging periods are left out rather thar
included.”Wilmott and Robeson 1995”



CLIMATE INTERPOLATION: STATION DATABASE
728 JOURNAL OF APPLIED METEQROLOGY AND CLIMATOLOGY Vounee 48 HUtCh|nson et al. 2009 Deve|0plng
interpolation in Canada.

VARIATION OF FREQUENCY OF THE
NETWORK IN TIME

There is some variation in the number of
Station over the interpolation period (1961-2003).

FrG. 1. Numbers of climate statiors with dally temperature and procipitation data for 1961-2003.

A i A A, IS A e W o “The period 1961-2003 was selected for the current

Pl gl w ﬁgwﬁmjgfﬂﬁgﬁwmwork The number of precipitation stations that were
active in any give year over this period ranged from
2000-3000 while the number of temperature stations

varied from about 1500 to 2200. as shown in Fig.1.”

.*«‘ i :-, | UNEQUAL DISTRIBUTION OF THE NETWORK

—> This figure shows the stations
used for modeling on day of year
250 in 1975. Coverage is denser in
the south...

FiG. 2 Statioa locatkms used (o ganerate daily precipitation models; example for yearday 250 in
1975, Lime defined by latitude = ~0.15 X longitude +42.0. Lambert canformal conic projection.



BRIGS ET AL. 1996 TOPOGRAPHIC BIAS

Relationships at higher elevations

3 - - b - - are often not represented properly
" . . . because of bias in the distribution of
| the network.

Plain

Plateau

Station *

FiG. 1. Spatially biased sampling networks in which a major
topographic feature is (a) resolved and (b) unresolved.

Elevation bias is clearly present in the stations network we used, but it is unclear how
much, and where, this affects the results. Briggs and Cogley (1996) showed that in the
United States weather stations tend to be biased toward lower elevations, and our results
confirm this, but show that while this pattern is common at high latitudes and in the
subtropics, it tends to be reversed in the tropics. Hijmans et al. 2000:1977.



Note that the
covariance is the
inverse of the
semivariance...

This is why it needs
to be inverted to
connect TPS and
Kriging. See Hastie
and Tibshirani
1990: 29 for
details...

COVARIANCE AND SEMI-VARIOGRAMS
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Fig. 1.10: Some basic concepts about variograms: (a) the difference between semivariance and covariance; (b) it is often
important in geostatistics to distinguish between the sill variation (C, 4+ C;) and the sill parameter (C,) and between the
range parameter (R) and the practical range; (c) a variogram that shows no spatial correlation can be defined by a single

parameter (C;); (d) an unbounded variogram.



VARIOGRAM AND SEMI-VARIOGRAM MODELS

a)
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sill

¥h)
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Figure 6.3. Examples of the most commonly used variogram models: (a) spherical; (b) expo~z

(¢) linear; and (d) Gaussian

X )

range a

range a

Interpolation of new values requires
the fitting of a covariance function
that will allow to predict new values
at unknown places....

The function must be positive on its
domain (positive definite matrix)....

“The shape of the semivariogram near the origin
is of particular interest since it indicates the
degree of smoothness of spatial continuity of the
spatial variable under study. A parabolic shape
near the origin arises with a very smooth spatial
variable that is both continuous and
differentiable. A linear shape near the origin
reflects a variable that is continuous but not
differentiable, and hence less regular. A
discontinuity, or vertical jump, at the origin [...]
indicates that the spatial variable is not
continuous and has highly irreqular p.276 Waller
and Gotway...

Variograms represent the relationship between pairwise observation as a function of

distance (or lags)



NEW ET AL. 2001: COMPARISON IN ACCURACY ASSESSMENT
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Fig. 14. Comparison of
precipitation grids
(mm mo!) for July
over the Indian sub-
continent. (a) Original
0.5° grid from NEW99;
(b) NEWOL1 fitted to the
NEW99 0.5° elevation
grid; (c) NEWO1 at 10";
(d) precipitation sta-
tion data wused to
interpolate NEWO1,
with the colours corre-
sponding to the July
mean precipitation at
these stations



INTER-PRODUCT PRODUCT COMPARISON

(@ NEW99 (0.5°) [JANUARY] NEWO1 (10°) [JANUARY]

4a°N 8
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Clear improvements
In terms of details for s2N
NEWO1 compared to

Older product NEW99.
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Fig. 15. Comparison of pre-
cipitation grids (mm mo-') for 42°N
January over the western
USA. (a) Orginal 0.5° grid
from NEW99; (b) NEW01 at 39N
10’; (c) the PRISM precipita-
tion grid at 10"; (d) precipi-
tation station data used to in-
terpolate NEWO01, with the 123°W 120°W 117°W  114W 111°W
colours correspondm.g.to Fhe 0 5 800
January mean precipitation
at these stations
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New et al. 2002



