Global Consensus Land Cover Data for Spatial Biodiversity Research

Mao-Ning Tuanmu & Walter Jetz

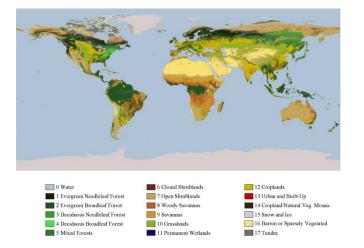
Department of Ecology and Evolutionary Biology, Yale University

Land Cover

• Key role in the Earth system

- Affecting material and energy flows
- Connecting human and natural systems

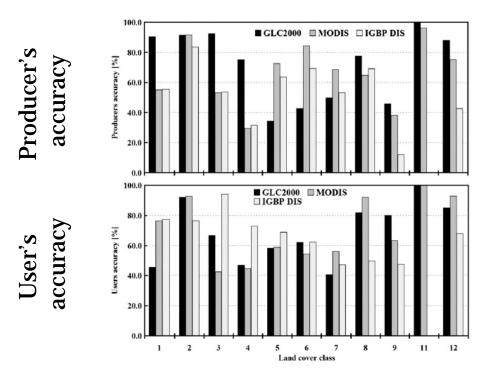
Land cover information


- Dynamics of the Earth system
- Resource management
- Biodiversity and ecological processes

Remotely Sensed Land Cover

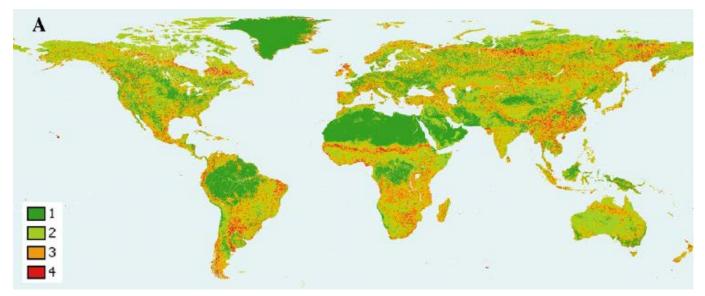
- Remote sensing
 - Spatially continuous and temporally consistent observations

Global land cover products


IGBP DISCover, GLC2000, MODIS, GlobCover...

Limitations of Existing Products

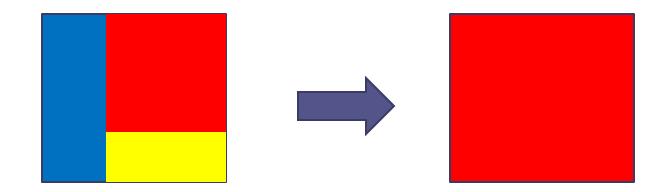
- Classification errors
 - Variation among land cover classes and products



Land cover classes

Herold et al. 2008

Limitations of Existing Products


- Classification errors
- Among-product disagreements

IGBP DISCover, U of Maryland, GLC2000 and MODIS; Herold et al. 2008

Limitations of Existing Products

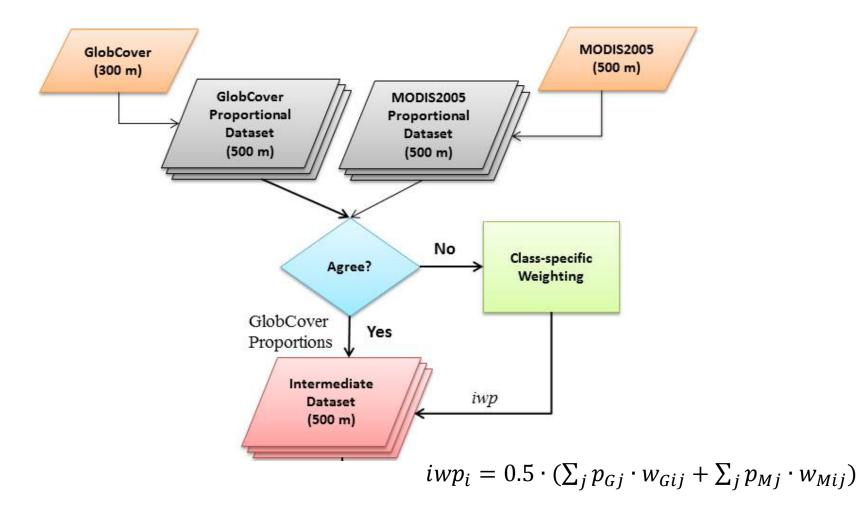
- Classification errors
- Among-product disagreements
- Categorical data False absences of minor land cover classes

Goal

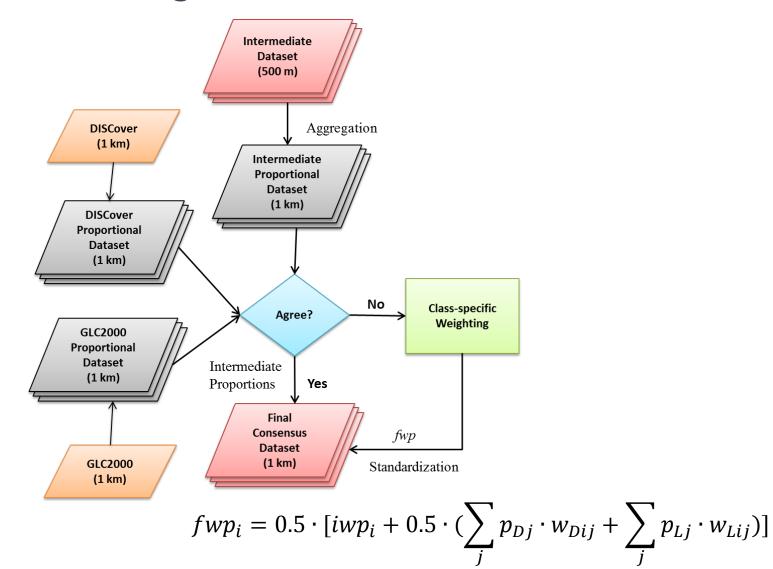
 To generate a harmonized set of 1-km resolution land cover product that provides scale-integrated and accuracy-weighted consensus land cover information on a continuous scale

Specific Objectives

- To generate a consensus dataset from four existing global land cover products
- To evaluate the ability of the consensus and the four input products to capture sub-pixel land cover information
- To examine the utility of these products for modeling species distributions


Four Global Land Cover Products

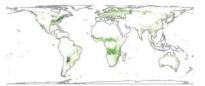
	DISCover	GLC2000	MODIS2005	GlobCover
Sensor	AVHRR	VEGETATION	MODIS	MERIS
Satellite	NOAA	SPOT	Aqua, Terra	ENVISAT
Image Acquisition Time	Apr 1992 - Mar 1993	Nov 1999 - Dec 2000	2005	Dec 2004 - Jun 2006
Input Data	Monthly NDVI composites	Diverse composites of reflectance in four spectral bands, NDVI and/or derived metrics	32-day composites and annual metrics of nadir BRDF-adjusted reflectance in bands 1 - 7, EVI and LST	Bi-monthly surface reflectance composites of 13 spectral bands
Classification Technique	Unsupervised classification	Flexible classification depending on the responsible institutions	Supervised classification decision tree	Per-pixel supervised and unsupervised classification; Per- cluster unsupervised classification
Processing Sequence	Continent-by-continent	Region-by-region	Global	Region-by-region
Classification Scheme	IGBP; 17 classes	LCCS-based; 22 classes	IGBP; 17 classes	LCCS-based; 22 classes
Spatial Resolution	1 km	1 km	500 m	300 m
Overall Accuracy	66.9% (Scepan, 1999)	68.8% (Mayaux etal., 2006)	75% (Friedl et al., 2010)	73.1% (Bicheron et al., 2008)


Generalized Classification Scheme

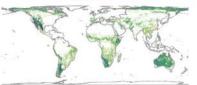
- Harmonization of classification schemes
 - 12 generalized classes (Herold et al. 2008)
 - Evergreen/deciduous needleleaf trees
 - Deciduous broadleaf trees
 - Evergreen broadleaf trees
 - Mixed/other trees
 - Shrubs
 - Herbaceous vegetation
 - Cultivated/managed vegetation
 - Regularly flooded vegetation
 - Urban/built-up areas
 - Snow/ice
 - Barren areas
 - Open water

Product Integration

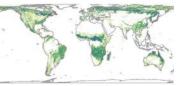
Product Integration

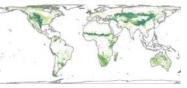

Land Cover Proportions

• 12 data layers

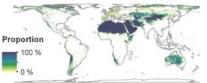

Evergreen/Deciduous Needleleaf Trees

Deciduous Broadleaf Trees



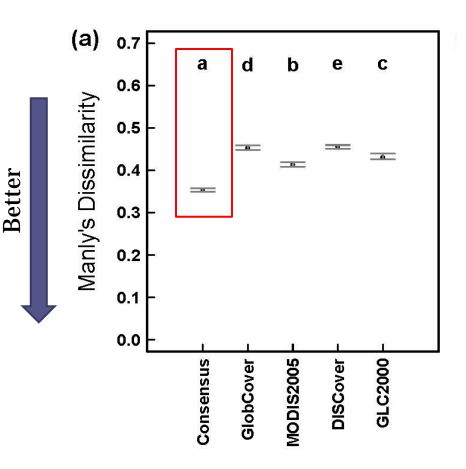


Mixed/Other Trees

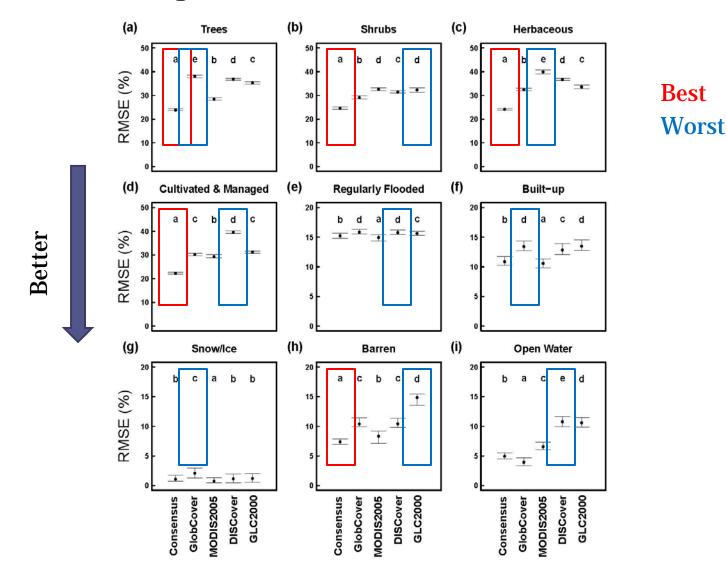

Herbaceous Vegetation

Regularly Flooded Vegetation

Open Water



Ability to Capture Sub-pixel Information


- 30-m NLCD2006 for the conterminous US (validation data)
- Calculating land cover prevalence at the 1-km resolution
- 9 land cover classes (Classes 1-4 were aggregated into a "trees" class)

Overall Dissimilarity

- Manly's dissimilarity
- $\frac{1}{2}\sum_i |E_i V_i|$
- *E_i* and *V_i* are proportions of class *i* in the evaluated and validation datasets
- 20 sets of randomly selected 10,000 1-km pixels

Dissimilarity for Individual Classes

Utility for Species Distribution Modeling

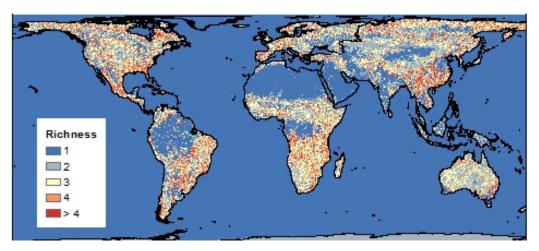
- Six avian habitat specialists
- Presence/absence data from North American Breeding Bird Survey (BBS)
- Deductive models
 - Occurrence probability = prevalence of all required land cover classes
- Inductive models
 - Logistic regression
 - Correlating species occurrence with the prevalence of all land cover classes

Model Accuracy

Better

Summary

- The consensus dataset retained strengths and reduced weaknesses of individual input products
- The consensus dataset has the better ability to capture sub-pixel land cover information
- The consensus dataset improves the accuracy of both deductive and inductive models for predicting species distributions


Discussion

Advantages

- Reduction of errors and uncertainties
- Proportional land cover information
- Low temporal resolution
 - Imagery from 1992 2006
 - Complementary information from old products
 - Matching temporal resolutions of biodiversity data
- Beyond the four products
- Beyond biodiversity research

Acknowledgement

- Tien Ming Lee
- Colleagues in Jetz lab
- Colleagues in the Environment and Organisms Working Group at NCEAS
- NASA, NSF, NCEAS

