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Notes assembled during the production of the climate interpolation review. 



Estimating smooth function: univariate case 

x 

y 

Problem 
Let us assume that we have an 
dependent variable y and a 
independent variable x. We want to 
estimate y at unkown points given x. 

x 

Solution 
Use a straight line: 
 
Y=f(x) 
Y=ax+b 
 
It is a however too smooth and at 
some location does not provide a good 
estimate of the value! 



Estimating smooth function: univariate case 

x 

y 

Problem 
Let us assume that we have a 
dependent variable y and a 
independent variable x. We want to 
estimate y at unknown points given x. 

x 

Solution 
Use a polynomial function 
 
Y=f(x) 
Y=a0+a1x1+a2x2+a2x3 
 
The polynomial is good at specific 
locations but not good at other to 
capture the relationship. 

“Polynomial bases tend to be very useful for situations in which interest focuses on properties 
of f in the vicinity of a single point, but when the question of interest relate f over its whole 
domain…, the polynomial bases have problems.” Wood 2006 



Estimating smooth function: univariate case 

x 

y 

Problem 
Let us assume that we have an 
dependent variable y and a 
independent variable x. We want to 
estimate y at unkown points given x. 

x 

Solution 
Use a linear piecewise function… 
 
Y=f(x) 
Y=y1+y2+y3 
 
Y1=a0+a1x for xϵ [x*1,x*2] 
Y2=a2+a3x for xϵ [x*2,x*3] 
Y3=Y2=a2+a3x for xϵ [x*2,x*3] 
 
The piecewise linear function provides 
a good fit but is not smooth i.e. 
around specific knots it is varies a lot. 



Estimating smooth function: univariate case 

x 

y 

Problem 
Let us assume that we have an 
dependent variable y and a 
independent variable x. We want to 
estimate y at unkown points given x. 

x 

Solution 
Use a polynomial function 
 
Y=f(x) 
Y=s(x)  
Where s(x) is a piecewise polynomial… 
 



ESTIMATING THE SMOOTH FUNCTION 

f(x) = Σ ai bi(x) or 
 
The function (polynomial) that we want to find can be expressed a sum of basis function. 

Find f(x) using the least square criterion: 

Thus, we are trying to describe the shape of the relationship between the response 
(Tmx,PCRCP)  decomposing the function in a sum of basis function. Taken together these 
functions for a space with mathematical properties… 



SPLINES AND PIECE-WISE POLYNOMIALS 

Given a set of point n, it is possible to demonstrate that we can always fit a polynomial of 
degree n passing through every point. The coefficient of this polynomial form a 
VANDERMONDE matrix. This matrix as interesting properties for estimation. 
 
However, we are interested in fitting piece-wise polynomials of lower degree than n 
because of “numerical”? instability and overshooting. 
 
Reasoning:  
 
- Using every point as a basis makes this a large system with a large space dimension, we 

can use a subset of them, the knots. 
- We are interested in capturing global trends rather than every detail hence we do not 

need to go through every point, this is a regression problem. 
- Piece wise polynomial are flexible and can capture both local and global charactersitic  

of the relationship. 
- To ensure continuity, we must enforce certain constraint at connecting points or 

“knots”. 
- In some case, the knots are not actual points but are derived from the distribution of 

the variable. 
 



THIN PLATE SPLINE 
 
• A surface introduced in geometric design by Duchon 1976. 
• Given K points in locations x, y with values z, TPS is the surface the passes through the 

point with 2(k+3) parameters. 
• The parameters are:  k points and 6 affine motion parameters (3 scalings and 3 

rotations)?? 
• There are many surfaces that can pass through a set of given k points!! 

 
SMOOTHING THIN PLATE SPLINE (STPS) 
 
• A surface that passes through k points but with a regularization so that the solution is 

unique. 
• STPS is the function/surface that minimizes the area of the surface. It is the most 

efficient in term of the material used to fit a thin plate of metal/plastic through the set 
of point. 

• In one dimension, it is equivalent to minimizing the variation or the curve i.e. its 
bending energy?? There are other additional form of energy possible…(see wiki). 
 

REGRESSION SMOOTHING THIN PLATE SPLINE 
 
• A surface that does not necessarily pass through k points but is smooth at the knots. 
 



REGRESSION SMOOTHING THIN PLATE SPLINE 

It minimizes the objective function with fidelity and bending energy criteria. 
 
The solution is a cubic in one dimension and a TPS function in 2D. 
 
The surface does not go through all the point but “not too far” reflecting a 
minimization of error or residuals as well as bending energy. 
 

“The cubic smoothing spline is more difficult to generalize to two or higher dimension: 
the so-called thin-plate spline is one example. P. 
Laplacian penalty 
 
 
“Another generalization is known as multivariate tensor product splines. These are  
also useful for generalizing univariate regression splines. The basic idea is to construct 
two-dimensional basis functions by multiplying together one dimensional basis 
functions in the respective predictors. 

The cubic spline which corresponds to a sum of piece wise cubic polynomial can 
be restated as another cubic polynomial (monomial??) and a kernel function 
(the biharmonic spline). It reflects a global and local component!!! 



KNOTS PROBLEM IN REGRESSION SPLINES 

Given a set of k points, the regression splines fits a model that does not pass through 
every point.  
 
Regression splines passes through a subset of representative points called “knots” that 
form a small basis set for the all set of point. 
 
The problem is to find this set of knots (i.e. representative points) from the all set of k 
points. (Wood 2003) 
 
 
“The model is typically fitted as a linear or generalized linear model without imposing a 
wiggliness penalty. The covariate points that are used to obtain the reduced basis are 
known as the knots of the regression spline. The number of knots controls the flexibility of 
the model, but unfortunately their location also tends to have a marked effect on the fitted 
model (see for example Hastie and Tibshirani 1990)”. 
 
 Some of the problems with knot placement can be partially alleviated by abandoning 
pure regression splines in favour of regression splines (e.g. Wahba (1980) and Parker and 
Rice (1985)) where the required penalty is that that associated with regression spline basis. 
 



PENALIZED REGRESSION SPLINES 

The splines does not depend on the number of knots but the number of knots need to 
be chosen so that there are close to the number of degree of freedom. 
 
Actual model degree of freedom is controlled by lamda. 

NOTE THAT IN THIS CASE THE DEGREE OF FREEDOM RELATES TO THE NUMBER 
OF BASIS NECESSARY TO REPRESENT THE DATA  POINTS!!! IT DESCRIBES THE 
INTRA RELATION OF THESE POINTS!!! 



RADIAL BASIS FUNCTION 

RBF play a central role in interpolation. RBF are function that have an argument 
which depends on the distance to a reference point (often called center). 
 
Sum of radial basis function can represent/approximate  a function. 
 
RBF are used in many context such as Kriging , Splines or Neural Network (RBFN see Lin et 
al. 2008) to estimate weights. 
 
Frequently used are: 
 
Gaussian RBF: ɸ(r)  = exp(-εr) 
 
Inverse Quadratic: 1/(1+ (εr)^2) 
 
Bi-harmonic spline: ɸ(r)  : r^2 ln(r) 
 
Polyharmonic spline: ɸ(r)  : r^k ln(r) 
 

http://en.wikipedia.org/wiki/Radial_basis_func
tion 

As function approximation: 
Y(x) = Σ ai ɸ(r)  
r= || x- xi || with different xi centers 
r is a distance function such as the Euclidean  
or other forms 



TPS is the function that passes through the points and minimizes the bending energy (i.e. integral of the second 
derivative).SO WE CAN EXPRESS THE POLYNOMIAL USED FOR INTERPOLATION AS A LAGRANGE POLYNOMIAL. THIS 
POLYNOMIAL IS ABLE TO INVERT AND VANDERMONDE MATRIX. A VANDERMONDE MATRIX IS A SPECIAL 
MATRIX…http://en.wikipedia.org/wiki/Lagrange_polynomial 

Cubic Polynomial 
Splines 

Transformation/
recasting: 

Lagrange?? 

Cubic 
Radial Basis 

Function Interpolator 

Expressing polynomial  basis in a form of Cubic Radial Basis function simplifies the 
problem of estimation because it leads to a four banded matrix with specific properties? 
Is there a term that shows the trend? Appears so see references 

RADIAL BASIS FUNCTION 

Radial basis functions are basis function that express… 

RBF must be positive definitive functions to be useful in interpolation…  

Myers 
1999 

A radial basis function interpolator can be written as 

Where g(x,xi) is a kernl function 
And fj(x) are linearly independent functions.  
The parameters ai and bi need to be  
Determined. 



Roughness 
measure 

Smoothness 
parameter 

Fit  
measure 

Penalty for 
too much 
roughness… 

This is the solution… 

m=order of the 
partial derivative, 
Nb of covariates 
n=number of 
points in the 
dataset 

SMOOTHING THIN PLATE SPLINES: 
OPTIMIZATION PROBLEM 

With phi x being a monomial of order m ||x-xi ||= R(x) 

Psi: radial basis function RBF 

O (f(x)) = 

O (f(x)) is a “objective functional”, the solution of the optimization problem is not 
a scalar but a function!!! 
 
 Differential equation problem of the Lagrange-Euler type (see Mitas et al.2009) 



SMOOTHING CUBIC SPLINE: OPTIMIZATION PROBLEM 

In one dimension, the solution to the objective functional is a cubic splines function.  
This function has two part: a first degree monomial and a RBF (kernel). 

Dubrule 1983, shows 
that the solution to the 
optimization problem is 
a trend function + an 
RBF function. 



THIN PLATE SPLINE: OPTIMIZATION PROBLEM 



With constraint 
General solution 

F(x1)=a1x1+a2x2+a3x3+ 

Huntchinson and Gessler 1994 

LINKS BETWEEN KRIGING AND TPS: DUAL PROBLEM 

In short, the optimization of the functional can be recasted into another functional which 
makes explicit the link between kriging and TPS. This can be done because of the duality 
property and the Riesz theorem function analysis/functional algebra.  

Where m= number of 
covariates 
N= number of 
observations/points/knots 



KEY IDEA USED IN PENALIZED LEAST SQUARE: 
DUALITY AND CHANGE OF BASIS 

Variable: x1 

Variable: x2 

p1 

p2 

p1: point/observation 
X1: axis of reference 
p2: vector associated to point p2 
e1: vector basis for x1, standard Euclidean basis 
e2: vector basis for x2, standard Euclidean basis   

Variable: x1 

Variable: x2 
p1 

p2 

Change of basis: 
The components of p2 form a new basis 
while the unit basis of the variables are 
the points!!  
b1= e1*p1 + e2*p2 

P2=(a1,a2) 
P1=(b1,b2) 

We can reverse the role of observation and variable without changing 
the structure of the space!!! This is just a change of perspective. 

p2= b1*e1 + b2*e2 

b1 

b2 



Simple Kriging 
Mean is known and not modeled  ( second order stationariy) 
 
Ordinary kriging 
Mean is not known and modeled (weak stationarity) 
 
Universal kriging 
Mean not known and modeled as a drift. 
 
Regression Kriging 
 

KRIGING: THE MANY KINDS… 

Mitas and Mitasovas 1999. 



KED AND RK MATRICES (HENGL ET AL. 2009) 

There is equivalence between RK and KED when regression uses GLS estimates for 
the trend…Details of the derivation 
In Hengl 2009:38 
 



KED AND RK EQUIVALENCE (HENGL ET AL. 2009) 

OLS and GLS estimates of the regression step in Regression Kriging (RK) are almost 
identical in practice…. 



KERNEL FUNCTIONS AND SMOOTHING SPLINES BASES I 

Smoothing functions splines are related to kernel functions and can be 
understood as acting as moving average filters acting on data points. 
 
“For a smoother with symmetric smoother matrix S, the eigendecomposition of S 
can be used to describe its behaviour. This is much like the use of a transfer 
function to describe a linear filter for time series.” 
 
“The transfer function is a convenient tool both for describing the action of a 
filter, and for designing one.p.59 Hastie 
 
 
 



KERNEL FUNCTIONS AND SMOOTHING SPLINES BASES II 

Add figures Hastie and Tibshirani p.58 and p.29 for the equivalent kernel…. 

Reproducing Kernel Hilbert Space (Hastie and Tibshirani 1990) 
 
This allows to recast the minimizing functional in terms of functional of a kernel and function 
basis?? 
 
Q is reproducing kernels that provides bases for representing the solution.  



| | 

INVERSE DISTANCE WEIGHTING 

Where r is a vector of observation 

Technically IDW has a kernel function that is an inverse power of p. P can be fitted from  
the data. 
 
Other kernel functions can be used such as exponential  decays.  

 Sum of the weights must be equal to one. 

Introduced by Sheppard 1968 in  
GIS/spatial analysis. 

Hengl 2009 



GEOGRAPHICALLY WEIGHTED REGRESSION 

GWR works by dividing the study areas in subregions where local regression models are run. 
When the region is equal an observation the model is fully localized. Observations are also 
weighted by distance using a Kernel function. 
 
-When region used for estimation overlap there may be some problem (see Griffith et al.) 
 
In many ways GWR is similar to LOESS p.29 Hastie and Tibshirani 1990 
 
 
 
 
 

As such the coefficient of regressions are calculated by incorporating the weights such that  

 becomes 

 

where X is the design matrix containing independent variables and a column 1 and y is the 

dependent variable. 

White paper Fortherigham et 
al. 

OLS 

WLS 



VARIATIONAL APPROACH TO INTERPOLATION   
(MITAS AND MITASOVA 1999) 

The variational approach to interpolation and approximation is based on the assumption 
that the interpolation function should pass through (or close to) the data points and, at  
the same time should be as smooth as possible. The two  requirements are combined into 
a single condition of minimizing the sum of the deviations from the measured points and the 
smoothness semi-norm  of the spline function. 

The solution to the variational problem is  a function composed of T(x) and R(x). 
The solution depends on I(F)  which is the smoothness semi-norm. 
 
I(F)  can be bivariate smoothness normed with squares of the second derivatives 
        can include higher order derivatives 
        can include the first order derivative (membrane term) 
        can include the first derivative (membrane term) and higher orders (RST) 
 
 
 
There are at least two deficiencies of the TPS function: (1) the plate stiffness causes the 
function to overshoot in regions where data create large gradients; (2) the second 
derivatives diverge in the data points, causing difficulties in surface geometry analysis. 



REGULARIZED LINEAR SPLINES WITH TENSIONS 

“The problem of overshoots can be eliminated  by adding the first order derivatives into 
the seminorm I(F), leading to TPS with tension (Franke 1985; Hutchinso 1989; Mitas and 
Mitasov 1988). Change of the tension tunes the surface from a stiff plate into an elastic 
membrane . “ 



Additional notes on mathematical concepts 
background slides 



BASIS FUNCTION 

A basis function:” is an element of a particular basis for a function space. Every 
continuous function in the function space can be represented as a linear combination of 
basis functions, just as every vector in a vector space can be represented as a linear 
combination of basis vectors.” wikipedia http://en.wikipedia.org/wiki/Basis_function 

Vector space with 
axis being vectors 

x1 

x2 

A point can be reference using 
coordinates representing how “much” 
of each axis/var there is 

Function space with 
axis being functions 

x1 

x2 

Basis functions are orthogonal so their inner 
product is equal to zero and they are square 
integrables. 



VECTOR SPACE-NORMED SPACE AND ALGEGRA 

A mathematical structure or object that allow for certain operations on element such that 
the results of these operations are within the structure. 
 
Element: vector and scalar 
Operations: addition, multiplication 
Other properties: commutativity, associativity etc. sometime with norm 

Vector space with 
axis being vectors 

x1 

x2 



OBJECTS AND STRUCTURE IN MATHEMATIC:  
RELEVANT TO PROBLEMS IN ALGEBRA 

number set groupringfield (corpus)vector spacefunctional space  

Level of abstraction 

Set: collection of object 
 
Algebraic structure: set+finite operations 
 
 group: set + more complex operations (rules of combination, closure) 
 
Ring: set + more generalized operation for number and matrices 
 
Field:… 
Vector space 
Functional space 

field-> corps commutatif (in French). 



VECTOR BASIS AND DEGREE OF FREEDOMS 

In regression splines the degree of freedom is equal to the number of bases used. It 
also relates to knots.  
 
Constraints reduce the number of freedoms. 
 
In classical statistics degree of freedoms relate to the number of observations… 



DUAL SPACE AND TRANSPOSE OF MATRIX 

Restating the wikipedia in the context of our problem: 
 
ai = coefficients of the sum of basis used to represent the function form of the 
relationship between x and y 
 
B(x) = is the function of x 
 
  y= Σai*B(xi) 

Φ(ri) : is the kernel function associated to ai 
            it is function in the reproducing kernel Hilbert space 

This is the polynomial basis function= yi  
The sum of yi in the vicinity gives an appximation of Y 

The gist of the idea is to restate the minimization problem such that the kernel Φ(ri) is 
what is sought to solve the penalized least square objective. Given the polynomial basis or 
yi values what are the coefficients? The coefficients are in effect equivalent to kernel 
function resulting in weights applied to neighboring observations???   



DUAL SPACE AND TRANSPOSE OF MATRIX 

Transpose of a linear mapIf ƒ : V → W is a linear map, then the transpose (or dual) ƒ* : W* → V* is defined byfor every φ 
∈ W*. The resulting functional ƒ*(φ) is in V*, and is called the pullback of φ along ƒ.The following identity holds for all φ ∈ 
W* and v ∈ V:where the bracket [•,•] on the left is the duality pairing of V with its dual space, and that on the right is 
the duality pairing of W with its dual. This identity characterizes the transpose,[6] and is formally similar to the definition 
of the adjoint.The assignment ƒ ↦ ƒ* produces an injective linear map between the space of linear operators from V to W 
and the space of linear operators from W* to V*; this homomorphism is an isomorphism if and only if W is finite-
dimensional. If V = W then the space of linear maps is actually an algebra under composition of maps, and the 
assignment is then an antihomomorphism of algebras, meaning that (ƒg)* = g*ƒ*. In the language of category theory, 
taking the dual of vector spaces and the transpose of linear maps is therefore a contravariant functor from the category 
of vector spaces over F to itself. Note that one can identify (ƒ*)* with ƒ using the natural injection into the double dual.If 
the linear map ƒ is represented by the matrix A with respect to two bases of V and W, then ƒ* is represented by the 
transpose matrix AT with respect to the dual bases of W* and V*, hence the name. Alternatively, as ƒ is represented by A 
acting on the left on column vectors, ƒ* is represented by the same matrix acting on the right on row vectors. These 
points of view are related by the canonical inner product on Rn, which identifies the space of column vectors with the 
dual space of row vectors. 

http://en.wikipedia.org/wiki/Dual_space 

Idea, the argument becomes the function and the function the argument. This is similar to 
having the variable becoming the observation and the observation becoming the variable. 
In the TPS context, finding the function versus finding the coefficients… 
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EUCLIDEAN AND HILBERT SPACE 

Hilbert space is a generalization of a vector space which extends a vector algebra (i.e. 
vector space with addition, scalar multiplication and vector multiplication) to Euclidean 
space with 2 and 3 dimensions n dimensions where n is infinite. 
 
It is a vector algebra with an inner product allowing the notion of metric for distances 
(i.e. geometry). It is a generalization of the Euclidean space.* 
 
Hilbert space is an infinite dimensional function space equipped with a norm where 
distance and directions are meaningful. 
 
This concept is important because in splines, the basis function “live” or form a Hilbert 
space of degree K corresponding to the number of knots…. (see Wood 2003, Wahba 
1990) 
 EUCLIDEAN SPACE:  
a real affine space with inner product. A affine space can be seen as vector space without 
origin. It is defined more technically in mathematics.  
“Affine space is nothing more than a vector space whose origin we try to forget about, by 
adding translations to the linear maps” Marcel Berger (Wikipedia) 
http://en.wikipedia.org/wiki/Affine_space. 
Euclidean space is flat!! It adheres to planar geometry. 



REPRODUCING KERNEL HILBERT SPACE 

Add info… 
 
It is a space that associate a kernel to the inner product of function... 
 
 



NORMS AND SEMI-NORMS 

Meyer et al. 2001 
http://matrixanalysis.com/DownloadChapters.html 

Norms are defined by inner products and are used to define geometrical concepts in the 
mathematical space.  
 
Norms are function that assign length to vectors. All norms must be strictly positive. 
 
Semi-norms are can assign zero length in contrast to norms… 
 
In the optimization problem for smoothing splines, the “roughness criterion” is defined as a 
norm or semi norm (Mitas 1999). 

Where I(F) 
Is a semi-norm… 



REPRODUCING KERNEL HILBERT SPACE 

Hilbert space has basis that are functions. 
 
A point P in an Hilbert space has coordinates: (a1,a2,…,an) with n being infinity 
 
P is (a1*f1, a2*f2, etc….)   P has certain amount “a1” of basis f1, and a certain amount 
“a2” of basis f2 etc. The collection of coefficient  (a1,a2,...) form a vector.  
 
The coordinates themselves can be seen as being a function!! Why not change our view 
point in which case the coordinates are the basis and the functions are the coefficients!!! 
 
In the context of regression, instead of searching for the function y=f(x) we search for 
 y0 = Σai*yi 
 
Where y0 could be tmax at location x0 
 
 
 
 

x 

y 
 ai are weights dependent on x!!! 
ai=R(xi) where R is the kernel function in 
reproducing kernel hilbert space. 
 
Since yi is also dependent on x, we have s sum of 
product or inner product of function that 
converges to the solution y0!! 



The linear caseLinear programming problems are optimization problems in which the objective function 
and the constraints are all linear. In the primal problem, the objective function is a linear combination 
of n variables. There are m constraints, each of which places an upper bound on a linear combination 
of the n variables. The goal is to maximize the value of the objective function subject to the constraints. 
A solution is a vector (a list) of n values that achieves the maximum value for the objective function.In 
the dual problem, the objective function is a linear combination of the m values that are the limits in 
the m constraints from the primal problem. There are n dual constraints, each of which places a lower 
bound on a linear combination of m dual variables. 
http://en.wikipedia.org/wiki/Dual_problem 

OPTIMIZATION DUAL AND PRIMAL FORMS 

Possible link to the context of TPS optimization: 
 
In this context, the goal is to find the function that minimizes the objective function 
(penalized least square). The constraints are on the coefficients bi of the function basis. 
 
Thus this is the primal form and turning it around we can maximize the objective function 
from the dual form problem: the variable is now the set of coefficient and the constraints 
are the function. If we associate the coefficient to a kernel then we have a function too! 
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REGULARIZATION THEORY 

Tikhonov regularization 
 
Variational regularization 
 

Total variation of differentiable functionsThe total variation of a differentiable function  
can be expressed as an integral involving the given function instead of as the supremum 
of the functionals of definitions 1.1 and 1.2 wikipwdia 

http://en.wikipedia.org/wiki/Tikhonov_regularization 

Regularization is used in mathematic to solve ill-posed problems.  Problems are ill-posed 
when unique solutions do not exist or the solution is unstable (ie small variation have a large 
impact on the value).  
 
Solutions may be found by stating additional assumption that translate into mathematical 
constraints. The problem is regularized or stabilized. 

http://en.wikipedia.org/wiki/Differentiable_function
http://en.wikipedia.org/wiki/Differentiable_function
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Supremum
http://en.wikipedia.org/wiki/Supremum
http://en.wikipedia.org/wiki/Supremum
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Functional_(mathematics)
http://en.wikipedia.org/wiki/Functional_(mathematics)

