Revision 08721acf
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/GAM_fusion_function_multisampling_validation_metrics.R | ||
---|---|---|
72 | 72 |
|
73 | 73 |
#PARSING INPUT PARAMETERS |
74 | 74 |
out_path <- list_param$out_path |
75 |
day_list<- list_param$rast_day_year_list[[i]] |
|
75 |
day_list <- list_param$rast_day_year_list[[i]]
|
|
76 | 76 |
#day_list <-rast_day_yearlist[[i]] #list of prediction for the current date... |
77 |
names_mod<-names(day_list) |
|
78 |
method_mod_obj<-list_param$method_mod_obj |
|
79 |
#Change to results_mod_obj[[i]]$data_s to make it less specific |
|
80 |
data_v <- method_mod_obj[[i]]$data_v |
|
81 |
data_s <- method_mod_obj[[i]]$data_s |
|
77 |
names_mod <- names(day_list) |
|
78 |
method_mod_obj <- list_param$method_mod_obj |
|
79 |
|
|
82 | 80 |
y_var_name <- list_param$y_var_name #missing--debugging |
81 |
multi_time_scale <- list_param$multi_time_scale |
|
82 |
|
|
83 |
if(multi_time_scale==TRUE){ |
|
84 |
data_v <- method_mod_obj[[i]]$data_month_v |
|
85 |
data_s <- method_mod_obj[[i]]$data_month_s |
|
86 |
daily_dev_sampling_dat <- method_mod_obj[[i]]$daily_dev_sampling_dat |
|
87 |
sampling_dat_day <- method_mod_obj[[i]]$daily_dev_sampling_dat |
|
88 |
}else{ |
|
89 |
#Change to results_mod_obj[[i]]$data_s to make it less specific |
|
90 |
data_v <- method_mod_obj[[i]]$data_v |
|
91 |
data_s <- method_mod_obj[[i]]$data_s |
|
92 |
sampling_dat_day <- (method_mod_obj[[i]])$sampling_dat |
|
93 |
} |
|
83 | 94 |
|
84 | 95 |
## Now create the stack |
85 | 96 |
|
86 | 97 |
rast_day_mod <- stack(day_list) |
87 | 98 |
names(rast_day_mod) <- names(day_list) |
88 |
extract_data_v<-extract(rast_day_mod,data_v,df=TRUE) |
|
89 |
extract_data_s<-extract(rast_day_mod,data_s,df=TRUE) |
|
90 |
|
|
91 |
data_v <-spCbind(data_v,extract_data_v) #should match IDs before joining for good practice |
|
92 |
data_s <-spCbind(data_s,extract_data_s) |
|
93 |
|
|
99 |
#Change to handle cases in which data_v is NULL!!! |
|
100 |
|
|
94 | 101 |
ns<-nrow(data_s) # some loss of data might have happened because of the averaging... |
95 | 102 |
nv<-nrow(data_v) |
96 | 103 |
|
97 |
sampling_dat_day<-(method_mod_obj[[i]])$sampling_dat |
|
98 |
|
|
99 |
metrics_v_obj<-calc_val_metrics_rast(data_v,y_var_name,names_mod) |
|
100 |
metrics_s_obj<-calc_val_metrics_rast(data_s,y_var_name,names_mod) |
|
101 |
|
|
104 |
|
|
102 | 105 |
#add sampling dat info... |
103 | 106 |
N=length(names_mod) |
104 |
run_info<-cbind(sampling_dat_day,n=nv) |
|
105 |
run_info[rep(seq_len(nrow(run_info)), each=N),] #repeating same row n times |
|
106 |
metrics_v_df<-cbind(metrics_v_obj$metrics,run_info) |
|
107 |
metrics_v_df["var_interp"]<-rep(y_var_name,times=nrow(metrics_v_df)) |
|
108 |
#Name of the variable interpolated, useful for cross-comparison between methods at later stages |
|
109 | 107 |
|
110 |
run_info<-cbind(sampling_dat_day,n=ns) |
|
108 |
#Handle case of 0% hold out, monhtly or daily |
|
109 |
if (nv > 0){ |
|
110 |
run_info<-cbind(sampling_dat_day,n=nv) |
|
111 |
run_info[rep(seq_len(nrow(run_info)), each=N),] #repeating same row n times |
|
112 |
|
|
113 |
extract_data_v<-extract(rast_day_mod,data_v,df=TRUE) |
|
114 |
data_v <-spCbind(data_v,extract_data_v) #should match IDs before joining for good practice |
|
115 |
metrics_v_obj<-calc_val_metrics_rast(data_v,y_var_name,names_mod) |
|
116 |
metrics_v_df<-cbind(metrics_v_obj$metrics,run_info) |
|
117 |
metrics_v_df["var_interp"]<-rep(y_var_name,times=nrow(metrics_v_df)) |
|
118 |
#Name of the variable interpolated, useful for cross-comparison between methods at later stages |
|
119 |
data_v<-spCbind(data_v,metrics_v_obj$residuals) |
|
120 |
|
|
121 |
} |
|
122 |
|
|
123 |
extract_data_s<-extract(rast_day_mod,data_s,df=TRUE) |
|
124 |
data_s <-spCbind(data_s,extract_data_s) |
|
125 |
|
|
126 |
metrics_s_obj <- calc_val_metrics_rast(data_s,y_var_name,names_mod) |
|
127 |
run_info <- cbind(sampling_dat_day,n=ns) |
|
111 | 128 |
run_info[rep(seq_len(nrow(run_info)), each=N),] |
112 |
metrics_s_df<-cbind(metrics_s_obj$metrics,run_info)
|
|
113 |
metrics_s_df["var_interp"]<-rep(y_var_name,times=nrow(metrics_s_df))
|
|
129 |
metrics_s_df <- cbind(metrics_s_obj$metrics,run_info)
|
|
130 |
metrics_s_df["var_interp"] <- rep(y_var_name,times=nrow(metrics_s_df))
|
|
114 | 131 |
#Name of the variable interpolated, useful for cross-comparison between methods at later stages |
115 | 132 |
|
116 |
data_v<-spCbind(data_v,metrics_v_obj$residuals) |
|
117 |
data_s<-spCbind(data_s,metrics_s_obj$residuals) |
|
118 |
|
|
119 |
validation_obj<-list(metrics_s_df,metrics_v_df,data_s,data_v) |
|
120 |
names(validation_obj)<-c("metrics_s","metrics_v","data_s","data_v") |
|
133 |
data_s <- spCbind(data_s,metrics_s_obj$residuals) |
|
134 |
|
|
135 |
#prepare output object |
|
136 |
|
|
137 |
if (nv > 0){ |
|
138 |
validation_obj<-list(metrics_s_df,metrics_v_df,data_s,data_v) |
|
139 |
names(validation_obj)<-c("metrics_s","metrics_v","data_s","data_v") |
|
140 |
}else{ |
|
141 |
validation_obj<-list(metrics_s_df,data_s) |
|
142 |
names(validation_obj)<-c("metrics_s","data_s") |
|
143 |
} |
|
121 | 144 |
|
122 | 145 |
return(validation_obj) |
123 | 146 |
|
... | ... | |
134 | 157 |
return(tb_list_tmp) #this is a data.frame |
135 | 158 |
} |
136 | 159 |
|
160 |
#### Function to create a list from a object made up of a list with names e.g. method_mod_obj or clim_method_mod_obj |
|
161 |
extract_list_from_list_obj<-function(obj_list,list_name){ |
|
162 |
#Create a list of an object from a given list of object using a name prodived as input |
|
163 |
|
|
164 |
list_tmp<-vector("list",length(obj_list)) |
|
165 |
for (i in 1:length(obj_list)){ |
|
166 |
tmp<-obj_list[[i]][[list_name]] #double bracket to return data.frame |
|
167 |
list_tmp[[i]]<-tmp |
|
168 |
} |
|
169 |
return(list_tmp) #this is a data.frame |
|
170 |
} |
|
171 |
|
|
137 | 172 |
#### Function to plot boxplot from data.frame table of accuracy metrics |
138 | 173 |
|
139 | 174 |
boxplot_from_tb <-function(tb_diagnostic,metric_names,out_prefix,out_path){ |
Also available in: Unified diff
changes in validation script to deal with hold out proportion at monthly time scale