Revision 0924578a
Added by Adam Wilson over 12 years ago
climate/research/LST_landcover_exploration.R | ||
---|---|---|
23 | 23 |
|
24 | 24 |
|
25 | 25 |
### copy lulc data to litoria |
26 |
setwd("data/lulc") |
|
27 |
system("scp atlas:/home/parmentier/data_Oregon_stations/W_Layer* .") |
|
26 |
#setwd("data/lulc")
|
|
27 |
#system("scp atlas:/home/parmentier/data_Oregon_stations/W_Layer* .")
|
|
28 | 28 |
|
29 | 29 |
|
30 | 30 |
setwd("/home/adamw/acrobates/projects/interp") |
... | ... | |
43 | 43 |
d2[,c("lon","lat")]=coordinates(st2)[match(d2$id,st2$id),] |
44 | 44 |
d2$elev=st2$elev[match(d2$id,st2$id)] |
45 | 45 |
d2$month=format(d2$date,"%m") |
46 |
#d2$value=d2$value/10 #convert to mm
|
|
46 |
d2$value=d2$value/10 #convert to mm |
|
47 | 47 |
|
48 | 48 |
|
49 | 49 |
## load topographical data |
50 |
topo=brick(as.list(list.files("data/topography",pattern="rst$",full=T)))
|
|
50 |
topo=brick(as.list(list.files("data/regions/oregon/topo",pattern="SRTM.*rst$",full=T)))
|
|
51 | 51 |
topo=calc(topo,function(x) ifelse(x<0,NA,x)) |
52 | 52 |
names(topo)=c("aspect","dem","slope") |
53 | 53 |
colnames(topo@data@values)=c("aspect","dem","slope") |
... | ... | |
81 | 81 |
|
82 | 82 |
|
83 | 83 |
### load the lulc data as a brick |
84 |
lulc=brick(as.list(list.files("data/lulc",pattern="rst$",full=T))) |
|
84 |
lulc=brick(as.list(list.files("data/regions/oregon/lulc",pattern="rst$",full=T)))
|
|
85 | 85 |
#projection(lulc)= |
86 | 86 |
#plot(lulc) |
87 | 87 |
|
... | ... | |
102 | 102 |
lulc=calc(lulc,function(x) ifelse(is.na(x),0,x)) |
103 | 103 |
projection(lulc)=projs |
104 | 104 |
|
105 |
### reclass/sum classes |
|
106 |
ShrubGrass=subset(lulc,"Shrub")+subset(lulc,"Grass");layerNames(ShrubGrass)="ShrubGrass" |
|
107 |
Other=subset(lulc,"Mosaic")+subset(lulc,"Barren")+subset(lulc,"Snow")+subset(lulc,"Wetland");layerNames(Other)="Other" |
|
108 |
lulc2=stack(subset(lulc,"Forest"),subset(lulc,"Urban"),subset(lulc,"Crop"),Other,ShrubGrass) |
|
109 |
|
|
105 | 110 |
### load the LST data |
106 |
lst=brick(as.list(list.files("data/lst",pattern="rescaled.rst$",full=T)[c(4:12,1:3)])) |
|
111 |
lst=brick(as.list(list.files("data/regions/oregon/lst",pattern="rescaled.rst$",full=T)[c(4:12,1:3)]))
|
|
107 | 112 |
lst=lst-273.15 |
108 | 113 |
colnames(lst@data@values)=format(as.Date(paste("2000-",as.numeric(gsub("[a-z]|[A-Z]|[_]|83","",layerNames(lst))),"-15",sep="")),"%b") |
109 | 114 |
layerNames(lst)=format(as.Date(paste("2000-",as.numeric(gsub("[a-z]|[A-Z]|[_]|83","",layerNames(lst))),"-15",sep="")),"%b") |
... | ... | |
112 | 117 |
|
113 | 118 |
###################################### |
114 | 119 |
## compare LULC with station data |
115 |
st2=SpatialPointsDataFrame(st2,data=cbind.data.frame(st2@data,demb=extract(demb,st2),extract(topo,st2),extract(topo2,st2),extract(lulc,st2),extract(lst,st2))) |
|
116 |
stlulc=extract(lulc,st2) #overlay stations and LULC values |
|
120 |
st2=st2[!is.na(extract(demb,st2)),] |
|
121 |
st2=SpatialPointsDataFrame(st2,data=cbind.data.frame(st2@data,demb=extract(demb,st2),extract(topo,st2),extract(topo2,st2),extract(lulc2,st2,buffer=1500,fun=mean),extract(lst,st2))) |
|
122 |
stlulc=extract(lulc2,st2,buffer=1500,fun=mean) #overlay stations and LULC values |
|
117 | 123 |
st2$lulc=do.call(c,lapply(apply(stlulc,1,function(x) which.max(x)),function(x) ifelse(is.null(names(x)),NA,names(x)))) |
118 | 124 |
|
119 | 125 |
|
126 |
### add MODIS metric to station data for month corresponding to that date |
|
127 |
### reshape for easy merging |
|
128 |
sdata.ul=melt(st2@data,id.vars=c("id","lat","lon","Forest","ShrubGrass","Crop","Urban","Other","lulc"),measure.vars=format(as.Date(paste("2000-",1:12,"-15",sep="")),"%b")) |
|
129 |
|
|
120 | 130 |
### generate sample of points to speed processing |
121 | 131 |
n=10000/length(unique(demb)) |
122 | 132 |
n2=30 #number of knots |
... | ... | |
174 | 184 |
#ms1[ms1$parm%in%c("x","y","dem"),c("Q2.5","Q50","Q97.5")]=ms1[ms1$parm%in%c("x","y","dem"),c("Q2.5","Q50","Q97.5")] |
175 | 185 |
|
176 | 186 |
|
187 |
####################################################################### |
|
188 |
#### look at interaction of tmax~lst*lulc using monthly means |
|
189 |
### add monthly data to sdata table by matching unique station_month ids. |
|
190 |
d2$month=as.numeric(format(d2$date,"%m")) |
|
191 |
### get monthly means and sd's |
|
192 |
dm=melt(cast(d2,id+lon+lat+elev~month,value="value",fun.aggregate=mean,na.rm=T),id.vars=c("id","lon","lat","elev"));colnames(dm)[grep("value",colnames(dm))]="mean" |
|
193 |
ds=melt(cast(d2,id+lon+lat+elev~month,value="value",fun.aggregate=sd,na.rm=T),id.vars=c("id","lon","lat","elev")) #sd of tmax |
|
194 |
dn=melt(cast(d2,id+lon+lat+elev~month,value="value",fun.aggregate=length),id.vars=c("id","lon","lat","elev")) #number of observations |
|
195 |
dm$sd=ds$value |
|
196 |
dm$n=dn$value[match(paste(dm$month,dm$id),paste(dn$month,dn$id))]/max(dn$value) # % complete record |
|
197 |
|
|
198 |
#get lulc classes |
|
199 |
lcs=layerNames(lulc2) |
|
200 |
|
|
201 |
dm$lst=sdata.ul$value[match(paste(dm$id,format(as.Date(paste("2000-",dm$month,"-15",sep=""),"%Y-%m-%d"),"%b"),sep="_"),paste(sdata.ul$id,sdata.ul$variable,sep="_"))] |
|
202 |
dm[,lcs]=sdata.ul[match(dm$id,sdata.ul$id),lcs] |
|
203 |
dm=dm[!is.na(dm$ShrubGrass),] |
|
204 |
dm$class=lcs[apply(dm[,lcs],1,which.max)] |
|
205 |
## update month names |
|
206 |
dm$m2=format(as.Date(paste("2000-",dm$month,"-15",sep="")),"%B") |
|
207 |
dm$m2=factor(as.character(dm$m2),levels=format(as.Date(paste("2000-",1:12,"-15",sep="")),"%B"),ordered=T) |
|
208 |
|
|
209 |
xyplot(mean~lst|m2,groups=class,data=dm,panel=function(x,y,subscripts,groups){ #+cut(dm$elev,breaks=quantile(dm$elev,seq(0,1,len=4)),labels=c("low","medium","high")) |
|
210 |
dt=dm[subscripts,] |
|
211 |
#panel.segments(dt$lst,dt$mean-dt$sd,dt$lst,dt$mean+dt$sd,groups=groups,lwd=.5,col="#C1CDCD") |
|
212 |
panel.xyplot(dt$lst,dt$mean,groups=groups,subscripts=subscripts,type=c("p","r"),cex=0.5) |
|
213 |
panel.abline(0,1,col="black",lwd=2) |
|
214 |
},par.settings = list(superpose.symbol = list(pch=1:6,col=c("lightgreen","darkgreen","grey","brown","red"))), |
|
215 |
auto.key=list(space="right"),scales=list(relation="free"), |
|
216 |
sub="Each point represents a monthly mean (climatology) for a single station \n Points are colored by LULC class with largest % \n Heavy black line is y=x",main="Monthly Mean LST and Monthly Mean Tmax", |
|
217 |
ylab="Mean Monthly Tmax (C)",xlab="Mean Monthly LST") |
|
218 |
|
|
219 |
|
|
220 |
mods=data.frame( |
|
221 |
form=c( |
|
222 |
"mean~lst+elev", |
|
223 |
"mean~lst+elev+ShrubGrass+Urban+Crop+Other", |
|
224 |
"mean~lst+elev+lst*ShrubGrass+lst*Urban+lst*Crop+lst*Other" |
|
225 |
), |
|
226 |
type=c("lst","intercept","interact"), |
|
227 |
stringsAsFactors=F) |
|
228 |
mods2=expand.grid(form=mods$form,month=1:12) |
|
229 |
mods2$type=mods$type[match(mods2$form,mods$form)] |
|
230 |
|
|
231 |
|
|
232 |
#summary(lm(mods$form[4],data=dm,weight=dm$n)) |
|
233 |
|
|
234 |
ms=lapply(1:nrow(mods2),function(i) { |
|
235 |
m=lm(as.formula(as.character(mods2$form[i])),data=dm[dm$month==mods2$month[i],],weight=dm$n[dm$month==mods2$month[i]]) |
|
236 |
return(list(model=m, |
|
237 |
res=data.frame( |
|
238 |
Formula=as.character(mods2$form[i]), |
|
239 |
Month=mods2$month[i], |
|
240 |
type=mods2$type[i], |
|
241 |
AIC=AIC(m), |
|
242 |
R2=summary(m)$r.squared))) |
|
243 |
}) |
|
244 |
|
|
245 |
### identify lowest AIC per month |
|
246 |
ms1=do.call(rbind.data.frame,lapply(ms,function(m) m$res)) |
|
247 |
aicw= cast(ms1,Month~type,value="AIC") |
|
248 |
aicwt=as.data.frame(t(apply(aicw[,-1],1,function(x) ifelse(x==min(x),"Minimum",ifelse((x-min(x))<7,"NS Minimum","NS")))));colnames(aicwt)=colnames(aicw)[-1];aicwt$Month=aicw$Month |
|
249 |
aic=melt(aicwt,id.vars="Month");colnames(aic)=c("Month","type","minAIC") |
|
250 |
aic$minAIC=factor(aic$minAIC,ordered=F) |
|
251 |
|
|
252 |
xyplot(AIC~as.factor(Month),groups=Formula,data=ms1,type=c("p","l"),pch=16,auto.key=list(space="top"),main="Model Comparison across months", |
|
253 |
par.settings = list(superpose.symbol = list(pch=16,cex=1)),xlab="Month") |
|
254 |
|
|
255 |
|
|
256 |
ms2=lapply(ms,function(m) m$model) |
|
257 |
|
|
258 |
mi=rep(c(1:12),each=3) #month indices |
|
259 |
|
|
260 |
fs=do.call(rbind.data.frame,lapply(1:12,function(i){ |
|
261 |
it=which(mi==i) |
|
262 |
x=anova(ms2[[it[1]]],ms2[[it[2]]],ms2[[it[3]]]) |
|
263 |
fs=c( |
|
264 |
paste(as.character(formula(ms2[[it[1]]]))[c(2,1,3)],collapse=" "), |
|
265 |
paste(as.character(formula(ms2[[it[2]]]))[c(2,1,3)],collapse=" "), |
|
266 |
paste(as.character(formula(ms2[[it[3]]]))[c(2,1,3)],collapse=" ")) |
|
267 |
data.frame(month=rep(i,3),model=fs,p=as.data.frame(x)[,6],sig=ifelse(as.data.frame(x)[,6]<0.05,T,F)) |
|
268 |
})) |
|
269 |
|
|
270 |
table(fs$sig,fs$model) |
|
271 |
which(fs$sig) |
|
272 |
|
|
177 | 273 |
### load oregon boundary for comparison |
178 | 274 |
roi=spTransform(as(readOGR("data/regions/Test_sites/Oregon.shp","Oregon"),"SpatialLines"),projs) |
179 | 275 |
|
... | ... | |
184 | 280 |
### Summary plots of covariates |
185 | 281 |
## LULC |
186 | 282 |
at=seq(0.1,100,length=100) |
187 |
levelplot(lulc,at=at,col.regions=bgyr(length(at)), |
|
283 |
levelplot(lulc2,at=at,col.regions=bgyr(length(at)),
|
|
188 | 284 |
main="Land Cover Classes",sub="Sub-pixel %")+ |
189 | 285 |
layer(sp.lines(roi, lwd=1.2, col='black')) |
190 | 286 |
|
climate/research/climate_stationarity.R | ||
---|---|---|
1 |
################## Data preparation for interpolation ####################################### |
|
2 |
############################ Extraction of station data ########################################## |
|
3 |
#This script perform queries on the Postgres database ghcn for stations matching the # |
|
4 |
#interpolation area. It requires the following inputs: # |
|
5 |
# 1)the text file ofGHCND stations from NCDC matching the database version release # |
|
6 |
# 2)a shape file of the study area with geographic coordinates: lonlat WGS84 # # |
|
7 |
# 3)a new coordinate system can be provided as an argument # |
|
8 |
# 4)the variable of interest: "TMAX","TMIN" or "PRCP" # |
|
9 |
# # |
|
10 |
#The outputs are text files and a shape file of a time subset of the database # |
|
11 |
#AUTHOR: Benoit Parmentier # |
|
12 |
#DATE: 06/02/212 # |
|
13 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363-- # |
|
14 |
################################################################################################## |
|
15 |
|
|
16 |
###Loading R library and packages |
|
17 |
library(RPostgreSQL) |
|
18 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
19 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
20 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
21 |
library(rgeos) # Polygon buffering and other vector operations |
|
22 |
library(reshape) |
|
23 |
|
|
24 |
### Parameters and arguments |
|
25 |
|
|
26 |
db.name <- "ghcn" #name of the Postgres database |
|
27 |
var <- c("TMAX","TMIN","PRCP") #name of the variables to keep: TMIN, TMAX or PRCP |
|
28 |
year_start<-"1970" #starting year for the query (included) |
|
29 |
year_end<-"2011" #end year for the query (excluded) |
|
30 |
|
|
31 |
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations/" #Jupiter LOCATION on EOS/Atlas |
|
32 |
#path<-"H:/Data/IPLANT_project/data_Oregon_stations" #Jupiter Location on XANDERS |
|
33 |
|
|
34 |
outpath=path # create different output path because we don't have write access to other's home dirs |
|
35 |
setwd(path) |
|
36 |
out_prefix<-"stationarity" #User defined output prefix |
|
37 |
buffer=100 |
|
38 |
|
|
39 |
#for Adam |
|
40 |
outpath="/home/wilson/data/" |
|
41 |
|
|
42 |
|
|
43 |
############ START OF THE SCRIPT ################# |
|
44 |
|
|
45 |
##### Connect to Station database |
|
46 |
drv <- dbDriver("PostgreSQL") |
|
47 |
db <- dbConnect(drv, dbname=db.name)#,options="statement_timeout = 1m") |
|
48 |
|
|
49 |
##### STEP 1: Select station in the study area |
|
50 |
|
|
51 |
infile1<- "ORWGS84_state_outline.shp" #This is the shape file of outline of the study area. |
|
52 |
filename<-sub(".shp","",infile1) #Removing the extension from file. |
|
53 |
interp_area <- readOGR(".",filename) |
|
54 |
CRS_interp<-proj4string(interp_area) #Storing the coordinate information: geographic coordinates longlat WGS84 |
|
55 |
|
|
56 |
##### Buffer shapefile if desired |
|
57 |
## This is done to include stations from outside the region in the interpolation fitting process and reduce edge effects when stiching regions |
|
58 |
if(buffer>0){ #only apply buffer if buffer >0 |
|
59 |
interp_area=gUnionCascaded(interp_area) #dissolve any subparts of roi (if there are islands, lakes, etc.) |
|
60 |
interp_areaC=gCentroid(interp_area) # get centroid of region |
|
61 |
interp_areaB=spTransform( # buffer roi (transform to azimuthal equidistant with centroid of region for most (?) accurate buffering, add buffer, then transform to WGS84) |
|
62 |
gBuffer( |
|
63 |
spTransform(interp_area, |
|
64 |
CRS(paste("+proj=aeqd +lat_0=",interp_areaC@coords[2]," +lon_0=",interp_areaC@coords[1]," +ellps=WGS84 +datum=WGS84 +units=m +no_defs ",sep=""))), |
|
65 |
width=buffer*1000), # convert buffer (km) to meters |
|
66 |
CRS(CRS_interp)) # reproject back to original projection |
|
67 |
# interp_area=interp_areaB # replace original region with buffered region |
|
68 |
} |
|
69 |
|
|
70 |
## get bounding box of study area |
|
71 |
bbox=bbox(interp_areab) |
|
72 |
|
|
73 |
### read in station location information from database |
|
74 |
### use the bbox of the region to include only station in rectangular region to speed up overlay |
|
75 |
dat_stat=dbGetQuery(db, paste("SELECT id,name,latitude,longitude |
|
76 |
FROM stations |
|
77 |
WHERE latitude>=",bbox[2,1]," AND latitude<=",bbox[2,2]," |
|
78 |
AND longitude>=",bbox[1,1]," AND longitude<=",bbox[1,2]," |
|
79 |
;",sep="")) |
|
80 |
coordinates(dat_stat)<-c("longitude","latitude") |
|
81 |
proj4string(dat_stat)<-CRS_interp |
|
82 |
|
|
83 |
|
|
84 |
# Spatial query to find relevant stations |
|
85 |
inside <- !is.na(over(dat_stat, as(interp_areab, "SpatialPolygons"))) #Finding stations contained in the current interpolation area |
|
86 |
stat_roi<-dat_stat[inside,] #Finding stations contained in the current interpolation area |
|
87 |
#stat_roi<-spTransform(stat_roi,CRS(new_proj)) # Project from WGS84 to new coord. system |
|
88 |
|
|
89 |
#Quick visualization of station locations |
|
90 |
plot(interp_area, axes =TRUE) |
|
91 |
plot(stat_roi, pch=1, col="red", cex= 0.7, add=TRUE) |
|
92 |
#legend("topleft", pch=1,col="red",bty="n",title= "Stations",cex=1.6) |
|
93 |
|
|
94 |
|
|
95 |
################################################################# |
|
96 |
### STEP 2: generate monthly means for climate-aided interpolation |
|
97 |
## Query to link station location information and observations |
|
98 |
## Concatenate date columns into single field for easy convert to date |
|
99 |
## Divide value by 10 to convert to degrees C and mm |
|
100 |
## Subset to years in year_start -> year_end |
|
101 |
## Drop missing values (-9999) |
|
102 |
## Drop observations that failed quality control (keep only qflag==NA) |
|
103 |
|
|
104 |
### first extract average daily values by month. |
|
105 |
system.time( |
|
106 |
d<<-dbGetQuery(db, # create dm object (data monthly) |
|
107 |
paste("SELECT station,month,element,count30,value30,count10,value10,latitude,longitude,elevation |
|
108 |
FROM |
|
109 |
(SELECT station,month,element,count(value) as count30,avg(value)/10.0 as value30,latitude,longitude,elevation |
|
110 |
FROM ghcn, stations |
|
111 |
WHERE station = id |
|
112 |
AND id IN ('",paste(stat_roi$id,collapse="','"),"') |
|
113 |
AND element IN ('",paste(var,collapse="','"),"') |
|
114 |
AND year>=",1970," |
|
115 |
AND year<",2000," |
|
116 |
AND value<>-9999 |
|
117 |
AND qflag IS NULL |
|
118 |
GROUP BY station, month,latitude,longitude,elevation,element |
|
119 |
) as a30 |
|
120 |
INNER JOIN |
|
121 |
(SELECT station,month,element,count(value) as count10,avg(value)/10.0 as value10 |
|
122 |
FROM ghcn, stations |
|
123 |
WHERE station = id |
|
124 |
AND id IN ('",paste(stat_roi$id,collapse="','"),"') |
|
125 |
AND element IN ('",paste(var,collapse="','"),"') |
|
126 |
AND year>=",2000," |
|
127 |
AND year<",2010," |
|
128 |
AND value<>-9999 |
|
129 |
AND qflag IS NULL |
|
130 |
GROUP BY station, month,element |
|
131 |
) as a10 |
|
132 |
USING (station,element,month) |
|
133 |
;",sep="")) |
|
134 |
) ### print used time in seconds ~ 10 minutes |
|
135 |
|
|
136 |
save(d,file=paste(outpath,"stationarity.Rdata")) |
|
137 |
|
|
138 |
#####################################################################33 |
|
139 |
#### Explore it |
|
140 |
load(paste(outpath,"stationarity.Rdata")) |
|
141 |
|
|
142 |
## subset by # of observations? |
|
143 |
thresh=.75 #threshold % to keep |
|
144 |
d$keep=d$count30/900>thresh&d$count10/300>thresh |
|
145 |
table(d$keep) |
|
146 |
|
|
147 |
## create month factor |
|
148 |
d$monthname=factor(d$month,labels=format(as.Date(paste(2000,1:12,1,sep="-")),"%B"),ordered=T) |
|
149 |
### start PDF |
|
150 |
pdf(paste(outpath,"ClimateStationarity.pdf",sep=""),width=11,height=8.5) |
|
151 |
|
|
152 |
library(latticeExtra) |
|
153 |
#combineLimits(useOuterStrips(xyplot(value10~value30|monthname+element,data=d[d$keep,],scales=list(relation="free",rot=0),cex=.5,pch=16, |
|
154 |
# ylab="2000-2010 Mean Daily Value",xlab="1970-2000 Mean Daily Value", |
|
155 |
# main="Comparison of Mean Daily Values",asp=1)))+ |
|
156 |
# layer(panel.abline(0,1,col="red"))+ |
|
157 |
# layer(panel.text(max(x),min(y),paste("R^2=",round(summary(lm(y~x))$r.squared,2)),cex=.5,pos=2)) |
|
158 |
|
|
159 |
for(v in unique(d$element)){ |
|
160 |
print(xyplot(value10~value30|monthname,data=d[d$keep&d$element==v,],scales=list(relation="free",rot=0),cex=.5,pch=16, |
|
161 |
ylab="2000-2010 Mean Daily Value",xlab="1970-2000 Mean Daily Value", |
|
162 |
main=paste("Comparison of Mean Daily Values for",v),asp=1)+ |
|
163 |
layer(panel.abline(0,1,col="red"))+ |
|
164 |
layer(panel.text(max(x),min(y),paste("R^2=",round(summary(lm(y~x))$r.squared,2)),cex=1,pos=2))) |
|
165 |
} |
|
166 |
|
|
167 |
## look at deviances |
|
168 |
d$dif=d$value10-d$value30 |
|
169 |
|
|
170 |
trellis.par.set(superpose.symbol = list(col=c("blue","grey","green","red"),cex=.5,pch=16)) |
|
171 |
|
|
172 |
for(v in unique(d$element)){ |
|
173 |
print(xyplot(latitude~longitude|monthname,group=cut(dif,quantile(d$dif[d$keep&d$element==v],seq(0,1,len=5))), |
|
174 |
data=d[d$keep&d$element==v,],auto.key=list(space="right"), |
|
175 |
main=paste("Current-Past anomolies for",v," (2000-2010 Daily Means Minus 1970-2000 Daily Means)"), |
|
176 |
sub="Positive values indicate stations that were warmer/wetter in 2000-2010 than 1970-2000")+ |
|
177 |
layer(sp.lines(as(interp_area,"SpatialLines"),col="black"))) |
|
178 |
} |
|
179 |
|
|
180 |
dev.off() |
climate/research/oregon/interpolation/Extraction_raster_covariates_study_area.R | ||
---|---|---|
71 | 71 |
sdata.u@data=cbind.data.frame(sdata.u@data,extract(subset(covar,subset=which(getZ(covar)!="00")), sdata.u)) #Extracting values from the raster stack for every point |
72 | 72 |
sdata.u=sdata.u@data #drop the spatial-ness |
73 | 73 |
|
74 |
### add MODIS metric to station data for month corresponding to that date |
|
74 | 75 |
### reshape for easy merging |
75 | 76 |
sdata.ul=melt(sdata.u,id.vars=c("station","latitude","longitude","x","y")) |
76 | 77 |
sdata.ul[,c("metric","type","month")]=do.call(rbind.data.frame,strsplit(as.character(sdata.ul$variable),"_")) |
climate/research/oregon/interpolation/GAM.R | ||
---|---|---|
79 | 79 |
"value ~ s(CLD_mean) + elev + ns + ew", |
80 | 80 |
"value ~ s(COT_mean) + elev + ns + ew", |
81 | 81 |
"value ~ s(CER_P20um) + elev + ns + ew", |
82 |
"value ~ s(CER_mean) + elev + ns + ew" |
|
82 |
"value ~ s(CER_mean) + elev + ns + ew", |
|
83 |
"value ~ s(CLD_mean) + s(CER_P20um) + elev + ns + ew", |
|
84 |
"value ~ s(COT_mean) + s(CLD_mean) + s(CER_P20um) + elev + ns + ew" |
|
83 | 85 |
# "value ~ s(x_OR83M,y_OR83M) + s(distoc) + elev + ns + ew + s(CER_P20um)", |
84 | 86 |
# "value ~ s(x_OR83M,y_OR83M,CER_P20um) +s(x_OR83M,y_OR83M,CLD_mean) + elev + ns + ew", |
85 | 87 |
# "value ~ s(x_OR83M,y_OR83M) + s(CER_P20um,CLD_mean) + elev + ns + ew", |
... | ... | |
128 | 130 |
ghcn.subsets <-lapply(dates, function(d) subset(ghcn@data, date==d)) #this creates a list of 10 subset data |
129 | 131 |
|
130 | 132 |
results=do.call(rbind.data.frame, # Collect the results in a single data.frame |
131 |
lapply(1:length(dates),function(i,savemodel=T,saveFullPrediction=T,scale=F,verbose=T) { # loop over dates
|
|
133 |
lapply(1:length(dates),function(i,savemodel=F,saveFullPrediction=F,scale=F,verbose=T) { # loop over dates
|
|
132 | 134 |
if(verbose) print(paste("Starting Date:",dates[i])) |
133 | 135 |
date<-dates[i] # get date |
134 | 136 |
month<-strftime(date, "%m") # get month |
Also available in: Unified diff
Added script to evaluate climatic stationarity (Task #479)