Revision 09b23c86
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/master_script_stage_7.R | ||
---|---|---|
10 | 10 |
#STAGE 5: Output analyses: assessment of results for specific dates and tiles |
11 | 11 |
#STAGE 6: Assessement of predictions by tiles and regions |
12 | 12 |
#STAGE 7: Mosaicing of predicted surfaces and accuracy metrics (RMSE,MAE) by regions |
13 |
#STAGE 8: Comparison of predictions across regions and years with figures generation. |
|
14 |
|
|
13 | 15 |
#AUTHOR: Benoit Parmentier |
14 |
#CREATED ON: 01/01/2015
|
|
15 |
#MODIFIED ON: 01/05/2016
|
|
16 |
#CREATED ON: 01/01/2016
|
|
17 |
#MODIFIED ON: 04/05/2016
|
|
16 | 18 |
#PROJECT: NCEAS INPLANT: Environment and Organisms |
17 | 19 |
|
20 |
#First source these files: |
|
21 |
#Resolved call issues from R. |
|
22 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
|
23 |
#MODULEPATH=$MODULEPATH:/nex/modules/files |
|
24 |
#module load pythonkits/gdal_1.10.0_python_2.7.3_nex |
|
25 |
|
|
18 | 26 |
## TODO: |
19 | 27 |
# |
20 | 28 |
# Clean up temporary files |
... | ... | |
50 | 58 |
|
51 | 59 |
#CALLED FROM MASTER SCRIPT: |
52 | 60 |
|
61 |
#script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" |
|
53 | 62 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
54 | 63 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_12192015.R" #PARAM12 |
55 |
function_mosaicing <-"global_run_scalingup_mosaicing_01012016.Rglobal_run_scalingup_mosaicing_01052016.R" |
|
56 |
source(file.path(function_mosaicing)) #source all functions used in this script |
|
57 |
source(file.path(function_mosaicing_functions)) #source all functions used in this script |
|
64 |
function_mosaicing <-"global_run_scalingup_mosaicing_04052016.R" |
|
65 |
source(file.path(script_path,function_mosaicing)) #source all functions used in this script |
|
66 |
source(file.path(script_path,function_mosaicing_functions)) #source all functions used in this script |
|
67 |
|
|
68 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
69 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
70 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_02092016.R" |
|
71 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
72 |
function_assessment_part3 <- "global_run_scalingup_assessment_part3_02102016.R" |
|
73 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
74 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
75 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
76 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
77 |
source(file.path(script_path,function_assessment_part3)) #source all functions used in this script |
|
58 | 78 |
|
59 | 79 |
### Parameters and arguments ### |
60 | 80 |
|
... | ... | |
68 | 88 |
y_var_month <- "TMin" |
69 | 89 |
} |
70 | 90 |
|
71 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
72 |
interpolation_method<-c("gam_CAI") |
|
73 |
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
74 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
75 | 91 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
76 | 92 |
|
77 |
out_region_name<-"" |
|
78 |
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") |
|
79 |
|
|
80 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
81 |
#master directory containing the definition of tile size and tiles predicted |
|
82 |
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
83 |
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
|
84 |
|
|
85 |
#region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
|
86 |
region_name <- c("reg4") #run assessment by region, this is a unique region only |
|
87 |
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
|
88 |
interpolation_method <- c("gam_CAI") #PARAM4 |
|
89 |
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
|
90 |
out_dir <- "/nobackupp8/bparmen1/" #PARAM6 |
|
91 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
92 |
create_out_dir_param <- TRUE #PARAM7 |
|
93 |
|
|
94 |
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
95 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
96 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
97 |
|
|
98 |
#list_year_predicted <- 1984:2004 |
|
99 |
list_year_predicted <- c("2014") |
|
100 |
#year_predicted <- list_year_predicted[1] |
|
101 |
|
|
102 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
|
103 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
|
104 |
num_cores <- 6 #number of cores used #PARAM13 |
|
105 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
106 |
|
|
107 |
##Additional parameters used in part 2, some these may be removed as code is simplified |
|
108 |
mosaic_plot <- FALSE #PARAM14 |
|
109 |
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
110 |
multiple_region <- TRUE #PARAM16 |
|
111 |
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
112 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
113 |
plot_region <- TRUE #PARAM18 |
|
114 |
threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
115 |
|
|
116 |
list_param_run_assessment_prediction <- list(in_dir1,region_name,y_var_name,interpolation_method,out_prefix, |
|
117 |
out_dir,create_out_dir_param,CRS_locs_WGS84,list_year_predicted, |
|
118 |
file_format,NA_flag_val,num_cores,plotting_figures, |
|
119 |
mosaic_plot,day_to_mosaic,multiple_region,countries_shp,plot_region) |
|
120 |
list_names <- c("in_dir1","region_name","y_var_name","interpolation_method","out_prefix", |
|
121 |
"out_dir","create_out_dir_param","CRS_locs_WGS84","list_year_predicted", |
|
122 |
"file_format","NA_flag_val","num_cores","plotting_figures", |
|
123 |
"mosaic_plot","day_to_mosaic","multiple_region","countries_shp","plot_region") |
|
124 |
|
|
125 |
|
|
126 |
names(list_param_run_assessment_prediction)<-list_names |
|
93 |
#####mosaicing parameters |
|
94 |
|
|
95 |
#Data is on ATLAS or NASA NEX |
|
96 |
#PARAM 1 |
|
97 |
#in_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NCEAS |
|
98 |
#in_dir <- "/nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NEX |
|
99 |
in_dir <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
100 |
|
|
101 |
y_var_name <- "dailyTmax" #PARAM2 |
|
102 |
interpolation_method <- c("gam_CAI") #PARAM3 |
|
103 |
region_name <- "reg4" #PARAM 4 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
104 |
mosaicing_method <- c("unweighted","use_edge_weights") #PARAM5 |
|
105 |
#out_suffix <- paste(region_name,"_","run10_1500x4500_global_analyses_pred_1991_04052016",sep="") #PARAM 6 |
|
106 |
#out_suffix_str <- "run10_1500x4500_global_analyses_pred_1991_04052016" #PARAM 7 |
|
107 |
|
|
108 |
out_suffix <- region_name #PARAM 6 |
|
109 |
out_suffix_str <- region_name #PARAM 7 |
|
110 |
|
|
111 |
metric_name <- "rmse" #RMSE, MAE etc. #PARAM 8 |
|
112 |
pred_mod_name <- "mod1" #PARAM 9 |
|
113 |
var_pred <- "res_mod1" #used in residuals mapping #PARAM 10 |
|
114 |
|
|
115 |
#out_dir <- in_dir #PARAM 11 |
|
116 |
out_dir <- "/nobackupp8/bparmen1/climateLayers/out/reg4" #PARAM 11, use this location for now |
|
117 |
create_out_dir_param <- TRUE #PARAM 12 |
|
118 |
|
|
119 |
#if daily mosaics NULL then mosaicas all days of the year #PARAM 13 |
|
120 |
day_to_mosaic <- c("19910101","19910102","19910103") #,"19920104","19920105") #PARAM9, two dates note in /tiles for now on NEX |
|
121 |
|
|
122 |
#CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
123 |
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
124 |
#proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
|
125 |
|
|
126 |
file_format <- ".tif" #PARAM 14 |
|
127 |
NA_value <- -9999 #PARAM 15 |
|
128 |
NA_flag_val <- NA_value #PARAM 16 |
|
129 |
|
|
130 |
num_cores <- 6 #PARAM 17 |
|
131 |
region_names <- c("reg23","reg4") #selected region names, ##PARAM 18 |
|
132 |
use_autokrige <- F #PARAM 19 |
|
133 |
proj_str <- CRS_locs_WGS84 |
|
134 |
|
|
135 |
###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20 |
|
136 |
infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
137 |
#infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
138 |
## All of this is interesting so use df_assessment!! |
|
139 |
|
|
140 |
year_processed <- 1991 #PARAM 31 |
|
141 |
#path_assessment <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991" |
|
142 |
#path_assessment <- file.path(in_dir,region_name,"assessment",paste("output_",region_name,year_processed,sep="")) |
|
143 |
df_assessment_files_name <- "/nobackupp6/aguzman4/climateLayers/out/reg4/assessment/output_reg4_1991/df_assessment_files_reg4_1991_reg4_1991.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
144 |
|
|
145 |
#in_dir can be on NEX or Atlas |
|
146 |
|
|
147 |
#python script and gdal on NEX NASA: |
|
148 |
mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
149 |
python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" |
|
150 |
#python script and gdal on Atlas NCEAS |
|
151 |
#mosaic_python <- "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 26 |
|
152 |
#python_bin <- "/usr/bin" #PARAM 27 |
|
153 |
|
|
154 |
algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
155 |
#algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
156 |
match_extent <- "FALSE" #PARAM 29 #try without matching!!! |
|
157 |
|
|
158 |
#for residuals... |
|
159 |
list_models <- NULL #PARAM 30 |
|
160 |
#list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default... |
|
127 | 161 |
|
128 | 162 |
#max number of cells to read in memory |
129 | 163 |
max_mem<-args[11] |
130 |
#rasterOptions(maxmemory=1e+07,timer=TRUE)
|
|
164 |
#in_dir_tiles <- file.path(in_dir,"tiles") #this is valid both for Atlas and NEX
|
|
131 | 165 |
|
132 |
#debug(run_assessment_prediction_fun) |
|
166 |
#rasterOptions(maxmemory=1e+07,timer=TRUE) |
|
167 |
list_param_run_mosaicing_prediction <- list(in_dir,y_var_name,interpolation_method,region_name, |
|
168 |
mosaicing_method,out_suffix,out_suffix_str,metric_name,pred_mod_name,var_pred, |
|
169 |
create_out_dir_param,day_to_mosaic,proj_str,file_format,NA_value,num_cores, |
|
170 |
region_name,use_autokrige,infile_mask,df_assessment_files_name,mosaic_python, |
|
171 |
python_bin,algorithm,match_extent,list_models) |
|
172 |
param_names <- c("in_dir","y_var_name","interpolation_method","region_name", |
|
173 |
"mosaicing_method","out_suffix","out_suffix_str","metric_name","pred_mod_name","var_pred", |
|
174 |
"create_out_dir_param","day_to_mosaic","proj_str","file_format","NA_value","num_cores", |
|
175 |
"region_name","use_autokrige","infile_mask","df_assessment_files_name","mosaic_python", |
|
176 |
"python_bin","algorithm","match_extent","list_models") |
|
177 |
names(list_param_run_mosaicing_prediction) <- param_names |
|
178 |
#list_param_run_mosaicing_prediction |
|
179 |
#debug(run_mosaicing_prediction_fun) |
|
133 | 180 |
#debug(debug_fun_test) |
134 | 181 |
#debug_fun_test(list_param_raster_prediction) |
135 | 182 |
i <- 1 #this select the first year of list_year_predicted |
136 |
if (stages_to_run[6]==6){ |
|
137 |
assessment_prediction_obj <- run_assessment_prediction_fun(i,list_param_run_assessment_prediction) |
|
183 |
if (stages_to_run[7]==7){ |
|
184 |
assessment_prediction_obj <- run_mosaicing_prediction_fun(i,list_param_run_mosaicing_prediction) |
|
185 |
#list_param_run_mosaicing_prediction |
|
138 | 186 |
} |
139 | 187 |
|
140 |
## Add stage 7 (mosaicing) here?? |
|
141 |
#i <- 1 #this select the first year of list_year_predicted |
|
142 |
#if (stages_to_run[7]==7){ |
|
143 |
# assessment_prediction_obj <- run_assessment_prediction_fun(i,list_param_run_assessment_prediction) |
|
144 |
#} |
|
145 |
|
|
146 | 188 |
############### END OF SCRIPT ################### |
147 | 189 |
##################################################### |
148 | 190 |
|
Also available in: Unified diff
stage 7 mosaicing following assessment, script cleaned and integrated to workflow