Project

General

Profile

« Previous | Next » 

Revision 0d15aebd

Added by Benoit Parmentier over 8 years ago

adding windowing and more options to plotting function time series

View differences:

climate/research/oregon/interpolation/global_product_assessment_part1_functions.R
4 4
#Combining tables and figures for individual runs for years and tiles.
5 5
#AUTHOR: Benoit Parmentier 
6 6
#CREATED ON: 05/24/2016  
7
#MODIFIED ON: 09/19/2016            
7
#MODIFIED ON: 09/20/2016            
8 8
#Version: 1
9 9
#PROJECT: Environmental Layers project     
10 10
#COMMENTS: Initial commit, script based on part NASA biodiversity conference 
......
19 19
#
20 20
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015
21 21

  
22
##COMMIT: plotting function time series, fixing bugs
22
##COMMIT: adding windowing and more options to plotting function time series
23 23

  
24 24
#################################################################################################
25 25

  
......
789 789
}
790 790

  
791 791

  
792
plot_observation_predictions_time_series <- function(df_pix_time_series,var_name1,var_name2,station_id,scaling=NULL,out_dir=".",out_suffix=""){
792
plot_observation_predictions_time_series <- function(df_pix_time_series,var_name1,var_name2,list_windows=NULL,time_series_id=NULL,scaling_factors=NULL,out_dir=".",out_suffix=""){
793 793
  #This function plots time series for observed and predicted points.
794 794
  #This assumes that time series with residuals were extracted from raster stacks.
795 795
  #
......
797 797
  #1) df_pix_time_series
798 798
  #2) var_name1: name of variables use
799 799
  #3) var_name2:
800
  #4) station_id
801
  #5) scaling: if null no scaling
802
  #6) out_dir
803
  #7) out_suffix
800
  #4) list_windows:
801
  #5) time_series_id
802
  #6) scaling_factors: if null no scaling
803
  #7) out_dir
804
  #8) out_suffix
804 805
  #
805 806
  
806 807
  ########## Start script #########
......
808 809
  ## Screen of NaN and make sure we have NA
809 810
  df_pix_ts[is.na(df_pix_ts)] <- NA
810 811
  
811
  #Scale if necessary
812
  if(!is.null(scaling)){
812
  #Scale if necessary, this should be a list
813
  if(!is.null(scaling_factors)){
813 814
    
814
    df_pix_ts[[var_name2]] <-  df_pix_ts[[var_name2]]*scaling 
815
    df_pix_ts[[var_name2]] <-  df_pix_ts[[var_name2]]*scaling_factors[2] 
815 816
  }
816 817

  
818
  if(is.null(time_series_id)){
819
    time_series_id <- unique(na.omit(df_pix_ts$id))
820
  }
821
  
817 822
  #### var_name 1
818
  d_z_obs <- zoo(as.numeric(df_pix_ts[[y_var_name]]),as.Date(df_pix_ts$date))
823
  d_z_obs <- zoo(as.numeric(df_pix_ts[[var_name1]]),as.Date(df_pix_ts$date))
819 824
  #plot(d_z_obs)  
820 825
  
821 826
  #### var_name 2
822
  d_z_var <- zoo(as.numeric(df_pix_ts[[var_pred_mosaic]]),as.Date(df_pix_ts$date)) #make sure date is a date object !!!
827
  d_z_var <- zoo(as.numeric(df_pix_ts[[var_name2]]),as.Date(df_pix_ts$date)) #make sure date is a date object !!!
823 828
  #names(d_z_var) <- var_pred_mosaic
824 829
  #plot(d_z_var)  
825 830

  
......
829 834
  #d_z_res <- zoo(as.numeric(df_pix_ts[[paste0("res_",var_pred_mosaic)]]),as.Date(df_pix_ts$date))
830 835
  #plot(d_z_diff)  
831 836

  
832
  d_z_all <- merge(d_z_var,d_z_obs,d_z_diff)
833
  names(d_z_all) <- c("pred","obs","diff")
834
  d_z <-  merge(d_z_var,d_z_obs)
835
  names(d_z) <- c("pred","obs")
837
  d_z_all <- merge(d_z_obs,d_z_var,d_z_diff)
838
  names(d_z_all) <- c("obs","pred","diff")
839
  d_z <-  merge(d_z_obs,d_z_var)
840
  names(d_z) <- c("obs","pred")
836 841
  
837 842
  range(d_z_diff,na.rm=T)
838 843
  mean(d_z_diff,na.rm=T)
839 844
  quantile(d_z_diff,na.rm=T)
845
  
846
  ##Make data.frame with dates for later use!!
847
  #from libary mosaic
848

  
849
  rmse_val <- rmse_fun(d_z_diff)
850
  df_basic_stat <- c(fav_stats(d_z_diff),rmse_val=rmse_val)
851
  
852
  #df_basic_stat <- fav_stats(d_z_all) #does not work on multiple ts
853
  #df_basic_stat$date <- date_processed
854
  #df_basic_stat$reg <- reg
855
  #quantile(data_stations_var_pred$res_mod1,c(1,5,10,90,95,99))
856
  df_quantile_val <- quantile(na.omit(d_z_diff),c(0,0.01,0.05,0.10,0.45,0.50,0.55,0.90,0.95,0.99,1))
857
  #names(df_quantile_val)
858
  #as.list(df_quantile_val)
859
  #df_test <- data.frame(names(df_quantile_val))[numeric(0), ]
860

  
840 861

  
841 862
  range_dates <- range(as.Date(df_pix_time_series$date))
842 863
  day_start <- range_dates[1]
......
848 869
  #range_year <- range(df_pix_ts$year)
849 870
  #start_year <- range_year[1]
850 871
  #end_year <- range_year[2]
851
  var="tmax"
872
  #var="tmax"
852 873

  
853 874
  res_pix <- 1000
854 875
  #res_pix <- 480
855 876
  col_mfrow <- 2
856 877
  row_mfrow <- 1
857 878
  
858
  png_filename <-  file.path(out_dir,paste("Figure_5a_time_series_profile_",region_name,"_",id_name,"_",
859
                                           y_var_name,"_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
860
  title_str <- paste("Daily", var_name1,"and", var_name2,"for", station_id," for the ", start_date,"-",end_date," time period",sep=" ")
861
  
862
  png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
863
  #this is the whole time series
864
  #plot(d_z_var,ylab="tmax in deg C",xlab="Daily time steps",
865
  #     main=title_str,cex=3,font=2,
866
  #     cex.main=1.5,cex.lab=1.5,font.lab=2,
867
  #     lty=3)
868
  #range(df_pix_ts[[var_pred_mosaic]],na.rm=T)
869
   
870
  #plot(d_z,plot.type="single",col=c("blue","red"))
879
  png_filename1 <-  file.path(out_dir,paste("Figure_5a_time_series_profile_combined_",region_name,"_",time_series_id,"_",
880
                                           var_name1,"_",var_name2,
881
                                           "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
882
  png_filename2 <-  file.path(out_dir,paste("Figure_5a_time_series_profile_separate_",region_name,"_",time_series_id,"_",
883
                                           var_name1,"_",var_name2,
884
                                           "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
885
  png_filename3 <-  file.path(out_dir,paste("Figure_5a_time_series_profile_separate_with_difference_",region_name,"_",
886
                                            time_series_id,"_", var_name1,"_",var_name2,
887
                                            "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
888

  
889
  title_str <- paste("Daily", var_name1,"and", var_name2,"for", time_series_id,"over the", start_date,"-",end_date,"time period",sep=" ")
871 890
  col_str <- c("blue","red")
891
  title_str2 <- paste("Daily", var_name1,"-", var_name2,"and difference","for", time_series_id,"over the", start_date,"-",end_date,"time period",sep=" ")
892
  col_str2 <- c("blue","red","darkgreen")
893
    
894
  png(filename=png_filename1,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
895
  #this is the whole time series
872 896
  plot(d_z,plot.type="single",col=col_str,
873 897
       ylab="tmax in deg C",xlab="Daily time steps",
874 898
       main=title_str,cex=1,font=2,type="l",
875 899
       cex.main=1.5,cex.lab=1.5,font.lab=2)
876
  
877
  #plot(df_pix_ts[[var_pred_mosaic]] ~ as.Date(df_pix_ts$date),ylab="tmax in deg C",xlab="Daily time steps",
878
  #   main=title_str,cex=1,font=2,type="l",
879
  #   cex.main=1.5,cex.lab=1.5,font.lab=2,
880
  #   lty=3)
881
  #lines(as.numeric(df_pix_ts[[y_var_name]]) ~ as.Date(df_pix_ts$date),ylab="tmax in deg C",xlab="Daily time steps",
882
  #   main=title_str,cex=1,font=2,col="red",type="l",
883
  #   cex.main=1.5,cex.lab=1.5,font.lab=2,
884
  #   lty=3)
900
  legend("topleft",legend=c(var_name1,var_name2),
901
       col=col_str,lty=c(1,1),
902
       cex=1.2,bty="n")
903
  dev.off()
904

  
905
  png(filename=png_filename2,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
906
  #this is the whole time series
907
  plot(d_z,plot.type="multiple",col=col_str,
908
       ylab="tmax in deg C",xlab="Daily time steps",
909
       main=title_str,cex=1,font=2,type="l",
910
       cex.main=1.5,cex.lab=1.5,font.lab=2)
885 911

  
912
  legend("topleft",legend=c(var_name1,var_name2),
913
       col=col_str,lty=c(1,1),
914
       cex=1.2,bty="n")
886 915
  dev.off()
916
  
917
  png(filename=png_filename3,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
918
  #this is the whole time series
919
  plot(d_z_all,plot.type="multiple",col=col_str2,
920
       ylab="tmax in deg C",xlab="Daily time steps",
921
       main=title_str2,cex=1,font=2,type="l",
922
       cex.main=1.5,cex.lab=1.5,font.lab=2)
887 923

  
924
  legend("topleft",legend=c(var_name1,var_name2,"diff"),
925
       col=col_str2,lty=c(1,1),
926
       cex=1.2,bty="n")
927
  dev.off()
928
  
888 929
  #for list_windows go in a loop
889 930
  if(!is.null(list_windows)){
890 931
    
......
892 933
      
893 934
      ### get smaller window
894 935

  
895
      window_range <- list_windows[i]
936
      window_range <- list_windows[[i]]
896 937
      #day_start <- "1999-01-01" #PARAM 12 arg 12
897 938
      #day_end <- "1999-12-31" #PARAM 13 arg 13
898 939
      day_start <- window_range[1]
899
      day_end <- windwow_range[2]
940
      day_end <- window_range[2]
900 941
      
901 942
      start_date <- as.Date(day_start)
902 943
      end_date <- as.Date(day_end)
903
      start_year <- year(start_date)
904
      end_year <- year(end_date)
944
      #start_year <- year(start_date)
945
      #end_year <- year(end_date)
905 946
      
906 947
      ### now select from the original time series
907 948
      #
908 949
      d_z_all_w <- window(d_z_all,start=start_date,end=end_date)
909 950
      d_z_w <- window(d_z,start=start_date,end=end_date)
910 951

  
952
      
953
      #### prepare inputs for plots
954
      png_filename4 <-  file.path(out_dir,paste("Figure_5b_time_series_profile_window_combined_",region_name,"_",time_series_id,"_",
955
                                           var_name1,"_",var_name2,
956
                                           "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
957
      png_filename5 <-  file.path(out_dir,paste("Figure_5b_time_series_profile_window_separate_",region_name,"_",time_series_id,"_",
958
                                           var_name1,"_",var_name2,
959
                                           "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
960
      png_filename6 <-  file.path(out_dir,paste("Figure_5b_time_series_profile_window_separate_with_difference_",region_name,"_",
961
                                            time_series_id,"_", var_name1,"_",var_name2,
962
                                            "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
963

  
964
      title_str <- paste("Daily", var_name1,"and", var_name2,"for", time_series_id,"over the", start_date,"-",end_date,"time period",sep=" ")
965
      col_str <- c("blue","red")
966
      title_str2 <- paste("Daily", var_name1,"-", var_name2,"and difference","for", time_series_id,"over the", start_date,"-",end_date,"time period",sep=" ")
967
      col_str2 <- c("blue","red","darkgreen")
968

  
911 969
      res_pix <- 1000
912 970
      #res_pix <- 480
913 971
      col_mfrow <- 2
914 972
      row_mfrow <- 1
915
  
916
      #png_filename <-  file.path(out_dir,paste("Figure5_b_time_series_profile_",region_name,"_",out_suffix,".png",sep =""))
917
      #title_str <- paste("Predicted daily ", station_id," ",var," for the ", start_year,"-",end_year," time period",sep="")
918
      png_filename <-  file.path(out_dir,paste("Figure_5_b_time_series_profile_",region_name,"_",id_name,"_",y_var_name,
919
                                               "_",start_date,"_",end_date,"_",out_suffix,".png",sep =""))
920
      title_str <- paste("Daily", var_name1,"and", var_name2,"for", station_id," for the ", start_date,"-",end_date," time period",sep=" ")
921

  
922
      png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
923 973

  
924
      #add legend later!!
925
      col_str <- c("blue","red")
974
      png(filename=png_filename4,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
975
      #this is the windowed time series
926 976
      plot(d_z_w,plot.type="single",col=col_str,
927 977
           ylab="tmax in deg C",xlab="Daily time steps",
928 978
           main=title_str,cex=1,font=2,type="l",
929 979
           cex.main=1.5,cex.lab=1.5,font.lab=2)
930
      
980
      legend("topleft",legend=c(var_name1,var_name2),
981
            col=col_str,lty=c(1,1),
982
            cex=1.2,bty="n")
983
      dev.off()
984

  
985
      png(filename=png_filename5,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
986
      #this is the windowed time series
987
      plot(d_z_w,plot.type="multiple",col=col_str,
988
           ylab="tmax in deg C",xlab="Daily time steps",
989
           main=title_str,cex=1,font=2,type="l",
990
           cex.main=1.5,cex.lab=1.5,font.lab=2)
991

  
992
      legend("topleft",legend=c(var_name1,var_name2),
993
            col=col_str,lty=c(1,1),
994
            cex=1.2,bty="n")
995
      dev.off()
996
  
997
      png(filename=png_filename6,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
998
      #this is the windowed time series
999
      plot(d_z_all_w,plot.type="multiple",col=col_str2,
1000
          ylab="tmax in deg C",xlab="Daily time steps",
1001
          main=title_str2,cex=1,font=2,type="l",
1002
          cex.main=1.5,cex.lab=1.5,font.lab=2)
1003

  
1004
      legend("topleft",legend=c(var_name1,var_name2,"diff"),
1005
          col=col_str2,lty=c(1,1),
1006
          cex=1.2,bty="n")
931 1007
      dev.off()
932 1008

  
1009
      list_png_files <- list(png_filename4,png_filename5,png_filename5)
933 1010
    }
934 1011
    
935 1012
  }
936 1013
  
937
  #return()
1014
  plot_time_seris_obj <- list(df_basic_stat,df_quantile_val)
1015
  names(plot_time_seris_obj) <- c("df_basic_stat","df_quantile_val")
1016
  return(plot_time_seris_obj)
938 1017
}
939 1018

  
1019
rmse_fun <- function(x){
1020
  #x: residuals vector
1021
  rmse_val <-sqrt(mean(x^2,na.rm=T))
1022
  return(rmse_val)
1023
}
940 1024

  
941 1025
############################ END OF SCRIPT ##################################

Also available in: Unified diff