Revision 0d1b5196
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 01/12/2016
|
|
8 |
#MODIFIED ON: 02/01/2016
|
|
9 | 9 |
#Version: 5 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap |
... | ... | |
19 | 19 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
20 | 20 |
# |
21 | 21 |
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015 |
22 |
#setfacl -Rm user:aguzman4:rwx /nobackupp8/bparmen1/output_run_global_analyses_pred_12282015 |
|
22 | 23 |
|
23 | 24 |
################################################################################################# |
24 | 25 |
|
... | ... | |
221 | 222 |
try(tb$reg <- tb$reg.x) |
222 | 223 |
try(summary_metrics_v$year_predicted <- summary_metrics_v$year_predicted.x) |
223 | 224 |
try(summary_metrics_v$reg <- summary_metrics_v$reg.x) |
225 |
try(summary_metrics_v$lat <- summary_metrics_v$lat.x) |
|
226 |
try(summary_metrics_v$lon <- summary_metrics_v$lon.x) |
|
224 | 227 |
#tb_all <- tb |
225 | 228 |
#summary_metrics_v_all <- summary_metrics_v |
226 | 229 |
|
... | ... | |
310 | 313 |
shp1 <- shps_tiles[[i]] |
311 | 314 |
pt <- centroids_pts[[i]] |
312 | 315 |
if(!inherits(shp1,"try-error")){ |
313 |
plot(shp1,add=T,border="blue")
|
|
316 |
plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX
|
|
314 | 317 |
#plot(pt,add=T,cex=2,pch=5) |
315 | 318 |
label_id <- df_tile_processed$tile_id[i] |
316 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red")) |
|
319 |
text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif")
|
|
317 | 320 |
} |
318 | 321 |
} |
319 | 322 |
#title(paste("Tiles ", tile_size,region_name,sep="")) |
320 |
|
|
323 |
#plot(shp1,add=T,border="blue",usePolypath = FALSE) #,add=T, |
|
324 |
#plot(pt,add=T,cex=2,pch=5) |
|
325 |
#label_id <- df_tile_processed$tile_id[i] |
|
326 |
#text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif") |
|
321 | 327 |
dev.off() |
322 | 328 |
|
323 | 329 |
#unique(summaty_metrics$tile_id) |
... | ... | |
374 | 380 |
############### |
375 | 381 |
### Figure 3: boxplot of average RMSE by model acrosss all tiles |
376 | 382 |
|
383 |
#Ok fixed..now selection of model but should also offer an option for using both models!! so make this a function!! |
|
377 | 384 |
for(i in 1:length(model_name)){ #there are two models!! |
378 | 385 |
## Figure 3a |
379 | 386 |
res_pix <- 480 |
... | ... | |
383 | 390 |
png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""), |
384 | 391 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
385 | 392 |
|
386 |
boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod) |
|
387 |
title("RMSE per model over all tiles") |
|
393 |
#boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod) |
|
394 |
boxplot(rmse~pred_mod,data=subset(tb,tb$pred_mod==model_name[i]))#,names=tb$pred_mod) |
|
395 |
title(paste("RMSE with outliers for all tiles: ",model_name[i],sep="")) |
|
388 | 396 |
dev.off() |
389 | 397 |
list_outfiles[[counter_fig+1]] <- paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="") |
390 | 398 |
|
391 | 399 |
## Figure 3b |
392 | 400 |
png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""), |
393 | 401 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
394 |
|
|
395 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
|
|
396 |
title("RMSE per model over all tiles") |
|
397 |
|
|
402 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
403 |
boxplot(rmse~pred_mod,data=subset(tb,tb$pred_mod==model_name[i]),ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
|
|
404 |
#title("RMSE per model over all tiles")
|
|
405 |
title(paste("RMSE with scaling for all tiles: ",model_name[i],sep="")) |
|
398 | 406 |
dev.off() |
399 | 407 |
list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
400 | 408 |
} |
401 | 409 |
counter_fig <- counter_fig + length(model_name) |
402 |
|
|
410 |
|
|
403 | 411 |
################ |
404 | 412 |
### Figure 4: plot predicted tiff for specific date per model |
405 | 413 |
|
... | ... | |
491 | 499 |
png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""), |
492 | 500 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
493 | 501 |
|
494 |
#coordinates(ac_mod) <- ac_mod[,c("lon","lat")]
|
|
495 |
coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later |
|
502 |
coordinates(ac_mod) <- ac_mod[,c("lon","lat")] |
|
503 |
#coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later
|
|
496 | 504 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
497 | 505 |
#title("(a) Mean for 1 January") |
498 | 506 |
p <- bubble(ac_mod,"rmse",main=paste("Average RMSE per tile and by ",model_name[i])) |
... | ... | |
509 | 517 |
list_outfiles[[counter_fig+i]] <- fig_filename |
510 | 518 |
} |
511 | 519 |
counter_fig <- counter_fig+length(model_name) |
512 |
|
|
520 |
|
|
513 | 521 |
|
514 | 522 |
###################### |
515 | 523 |
### Figure 7: Number of predictions: daily and monthly |
... | ... | |
522 | 530 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info |
523 | 531 |
|
524 | 532 |
#coordinates |
525 |
#try(coordinates(summary_metrics_v) <- c("lon","lat"))
|
|
526 |
try(coordinates(summary_metrics_v) <- c("lon.y","lat.y")) |
|
533 |
try(coordinates(summary_metrics_v) <- c("lon","lat")) |
|
534 |
#try(coordinates(summary_metrics_v) <- c("lon.y","lat.y"))
|
|
527 | 535 |
|
528 | 536 |
#threshold_missing_day <- c(367,365,300,200) |
529 | 537 |
|
... | ... | |
544 | 552 |
|
545 | 553 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
546 | 554 |
#summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
547 |
summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i]
|
|
555 |
summary_metrics_v$n_missing <- as.numeric(summary_metrics_v$n < threshold_missing_day[i])
|
|
548 | 556 |
summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1") |
549 | 557 |
|
550 |
#res_pix <- 1200 |
|
551 |
res_pix <- 960 |
|
552 |
|
|
553 |
col_mfrow <- 1 |
|
554 |
row_mfrow <- 1 |
|
555 | 558 |
fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
556 | 559 |
"_",out_suffix,".png",sep="") |
557 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
560 |
|
|
561 |
if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!! |
|
562 |
|
|
563 |
#res_pix <- 1200 |
|
564 |
res_pix <- 960 |
|
565 |
col_mfrow <- 1 |
|
566 |
row_mfrow <- 1 |
|
567 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
558 | 568 |
"_",out_suffix,".png",sep=""), |
559 | 569 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
560 | 570 |
|
561 |
model_name[j] |
|
571 |
model_name[j]
|
|
562 | 572 |
|
563 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
564 |
#title("(a) Mean for 1 January") |
|
565 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
|
573 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
|
|
574 |
#title("(a) Mean for 1 January")
|
|
575 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
|
|
566 | 576 |
threshold_missing_day[i])) |
567 |
p1 <- p+p_shp |
|
568 |
try(print(p1)) #error raised if number of missing values below a threshold does not exist |
|
569 |
dev.off() |
|
570 |
|
|
577 |
p1 <- p+p_shp |
|
578 |
try(print(p1)) #error raised if number of missing values below a threshold does not exist |
|
579 |
dev.off() |
|
580 |
|
|
581 |
} |
|
582 |
|
|
571 | 583 |
list_outfiles[[counter_fig+i]] <- fig_filename |
572 | 584 |
} |
573 | 585 |
counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days... |
574 |
|
|
586 |
|
|
575 | 587 |
### Potential |
576 | 588 |
png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
577 | 589 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
... | ... | |
585 | 597 |
|
586 | 598 |
table(tb$pred_mod) |
587 | 599 |
table(tb$index_d) |
588 |
table(subset(tb,pred_mod!="mod_kr")) |
|
600 |
#table(subset(tb,pred_mod!="mod_kr"))
|
|
589 | 601 |
table(subset(tb,pred_mod=="mod1")$index_d) |
590 | 602 |
#aggregate() |
591 | 603 |
tb$predicted <- 1 |
592 | 604 |
test <- aggregate(predicted~pred_mod+tile_id,data=tb,sum) |
593 |
xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test), |
|
594 |
pred_mod!="mod_kr"),type="h") |
|
605 |
#xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test),
|
|
606 |
# pred_mod!="mod_kr"),type="h")
|
|
595 | 607 |
|
596 | 608 |
as.character(unique(test$tile_id)) #141 tiles |
597 | 609 |
|
... | ... | |
628 | 640 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
629 | 641 |
|
630 | 642 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
643 |
##First plot with all models together |
|
631 | 644 |
|
632 | 645 |
## Figure 8a |
633 | 646 |
res_pix <- 480 |
634 | 647 |
col_mfrow <- 1 |
635 | 648 |
row_mfrow <- 1 |
636 | 649 |
|
637 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_","_",out_suffix,".png",sep=""),
|
|
650 |
png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep=""), |
|
638 | 651 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
639 | 652 |
|
640 | 653 |
p<- bwplot(rmse~pred_mod | reg, data=tb, |
641 |
main="RMSE per model and region over all tiles") |
|
654 |
main="RMSE per model and region over all tiles with outliers")
|
|
642 | 655 |
print(p) |
643 | 656 |
dev.off() |
644 | 657 |
|
645 |
list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
658 |
list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep="") |
|
646 | 659 |
counter_fig <- counter_fig + 1 |
647 | 660 |
|
648 | 661 |
## Figure 8b |
649 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_","_",out_suffix,".png",sep=""),
|
|
662 |
png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",out_suffix,".png",sep=""), |
|
650 | 663 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
651 | 664 |
|
652 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
653 |
title("RMSE per model over all tiles") |
|
665 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
|
|
666 |
#title("RMSE per model over all tiles")
|
|
654 | 667 |
p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5), |
655 |
main="RMSE per model and region over all tiles") |
|
668 |
main="RMSE per model and region over all tiles with scaling")
|
|
656 | 669 |
print(p) |
657 | 670 |
dev.off() |
658 | 671 |
|
659 | 672 |
list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
660 | 673 |
counter_fig <- counter_fig + 1 |
661 | 674 |
|
662 |
## Select mod1 only now |
|
663 |
tb_subset <- subset(tb,model_name=="mod1") |
|
664 |
## Figure 8c |
|
675 |
##Second, plot for each model separately |
|
665 | 676 |
|
666 |
res_pix <- 480 |
|
667 |
col_mfrow <- 1 |
|
668 |
row_mfrow <- 1 |
|
677 |
for(i in 1:length(model_name)){ |
|
678 |
|
|
679 |
tb_subset <- subset(tb,pred_mod==model_name[i])#mod1 is i=1, mod_kr is last |
|
680 |
## Figure 8c |
|
681 |
|
|
682 |
res_pix <- 480 |
|
683 |
col_mfrow <- 1 |
|
684 |
row_mfrow <- 1 |
|
669 | 685 |
|
670 |
png(filename=paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_","mod1","_",out_suffix,".png",sep=""), |
|
686 |
fig_filename <- paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="") |
|
687 |
png(filename=fig_filename, |
|
671 | 688 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
672 | 689 |
|
673 |
p<- bwplot(rmse~pred_mod | reg, data=tb_subset, |
|
674 |
main="RMSE per model and region over all tiles") |
|
675 |
print(p) |
|
676 |
dev.off() |
|
690 |
p<- bwplot(rmse~pred_mod | reg, data=tb_subset,
|
|
691 |
main="RMSE per model and region over all tiles with outliers")
|
|
692 |
print(p)
|
|
693 |
dev.off()
|
|
677 | 694 |
|
678 |
list_outfiles[[counter_fig+1]] <- paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
679 |
counter_fig <- counter_fig + 1 |
|
695 |
list_outfiles[[counter_fig+1]] <- fig_filename
|
|
696 |
counter_fig <- counter_fig + 1
|
|
680 | 697 |
|
681 |
## Figure 8d |
|
682 |
png(filename=paste("Figure8d_boxplot_overall_separated_by_region_scaling_","mod1","_",out_suffix,".png",sep=""), |
|
698 |
## Figure 8d |
|
699 |
fig_filename <- paste("Figure8d_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
700 |
png(filename=fig_filename, |
|
683 | 701 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
684 | 702 |
|
685 |
boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod) |
|
686 |
title("RMSE per model over all tiles") |
|
687 |
p<- bwplot(rmse~pred_mod | reg, data=tb_subset,ylim=c(0,5), |
|
688 |
main="RMSE per model and region over all tiles") |
|
689 |
print(p) |
|
690 |
dev.off() |
|
703 |
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
|
|
704 |
#title("RMSE per model over all tiles")
|
|
705 |
p<- bwplot(rmse~pred_mod | reg, data=tb_subset,ylim=c(0,5),
|
|
706 |
main="RMSE per model and region over all tiles with scaling")
|
|
707 |
print(p)
|
|
708 |
dev.off()
|
|
691 | 709 |
|
692 |
list_outfiles[[counter_fig+1]] <- paste("Figure8d_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
|
|
693 |
counter_fig <- counter_fig + 1 |
|
710 |
list_outfiles[[counter_fig+1]] <- fig_filename
|
|
711 |
counter_fig <- counter_fig + 1
|
|
694 | 712 |
|
713 |
} |
|
714 |
|
|
695 | 715 |
##################################################### |
696 | 716 |
#### Figure 9: plotting boxplot by year and regions ########### |
697 | 717 |
|
... | ... | |
727 | 747 |
############## Collect information from assessment ########## |
728 | 748 |
|
729 | 749 |
# This is hard coded and can be improved later on for flexibility. It works for now... |
730 |
comments_str <- c("tile processed for the region", |
|
750 |
comments_str <- |
|
751 |
c("tile processed for the region", |
|
731 | 752 |
"boxplot with outliers", |
732 | 753 |
"boxplot with outliers", |
733 | 754 |
"boxplot scaling by tiles", |
... | ... | |
751 | 772 |
"boxplot overall separated by region with_outliers", |
752 | 773 |
"boxplot overall separated by region with_scaling") |
753 | 774 |
|
754 |
figure_no <- c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3a","figure_3b","figure_3b", |
|
775 |
model_name=col_model_name, |
|
776 |
reg=col_reg, |
|
777 |
year_predicted=col_year_predicted, |
|
778 |
filename=unlist(list_outfiles)) |
|
779 |
comments_str <- |
|
780 |
#Should have this at the location of the figures!!! will be done later? |
|
781 |
r1 <-c("figure_1","tile processed for the region",NA,region_name,year_predicted,list_outfiles[[1]]) |
|
782 |
r2 <-c("figure_2a","boxplot with outliers","mod1",region_name,year_predicted,list_outfiles[[2]]) |
|
783 |
r3 <-c("figure_2a","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[3]]) |
|
784 |
r4 <-c("figure_2b","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[4]]) |
|
785 |
r5 <-c("figure_2b","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[5]]) |
|
786 |
r6 <-c("figure_3a","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[6]]) |
|
787 |
r7 <-c("figure_3b","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[7]]) |
|
788 |
r8 <-c("figure_3a","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[8]]) |
|
789 |
r9 <-c("figure_3b","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[9]]) |
|
790 |
|
|
791 |
NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_1","mod_kr","mod_kr", |
|
792 |
|
|
793 |
|
|
794 |
c("tile processed for the region", |
|
795 |
"boxplot with outliers", |
|
796 |
"boxplot with outliers", |
|
797 |
"boxplot scaling by tiles", |
|
798 |
"boxplot scaling by tiles", |
|
799 |
"boxplot overall region with outliers", |
|
800 |
"boxplot overall region with scaling", |
|
801 |
"boxplot overall region with outliers", |
|
802 |
"boxplot overall region with scaling", |
|
803 |
"Barplot of accuracy metrics ranked by tile", |
|
804 |
"Barplot of accuracy metrics ranked by tile", |
|
805 |
"Average accuracy metrics map at centroids", |
|
806 |
"Average accuracy metrics map at centroids", |
|
807 |
"Number of missing day threshold1 map centroids", |
|
808 |
"Number of missing day threshold2 map centroids", |
|
809 |
"Number of missing day threshold3 map centroids", |
|
810 |
"Number of missing day threshold4 map centroids", |
|
811 |
"number_daily_predictions_per_model", |
|
812 |
"histogram number_daily_predictions_per_models", |
|
813 |
"boxplot overall separated by region with_outliers", |
|
814 |
"boxplot overall separated by region with_scaling", |
|
815 |
"boxplot overall separated by region with_outliers", |
|
816 |
"boxplot overall separated by region with_scaling") |
|
817 |
|
|
818 |
|
|
819 |
figure_no <- c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3b","figure_3a","figure_3b", |
|
755 | 820 |
"figure_5", "figure_5","figure_6","figure_6","Figure_7a","Figure_7a","Figure_7a","Figure_7a","Figure_7b", |
756 |
"Figure_7c","Figure 8a","Figure 8a","Figure 8b","Figure 8b") |
|
821 |
"Figure_7c","Figure 8a","Figure 8b","Figure 8c","Figure 8d","Figure 8c","Figure 8d") |
|
822 |
|
|
823 |
col_model_name <- c(NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_1","mod_kr","mod_kr", |
|
824 |
"mod1","mod_kr","mod1","mod_kr","mod1","mod1","mod1","mod1",NA, |
|
825 |
NA,NA,NA,"mod1","mod1","mod_kr","mod_kr") |
|
826 |
|
|
827 |
-rw-r--r-- 1 parmentier layers 14441 Feb 2 16:06 Figure2a_boxplot_with_oultiers_by_tiles_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
828 |
-rw-r--r-- 1 parmentier layers 13617 Feb 2 16:06 Figure2a_boxplot_with_oultiers_by_tiles_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
829 |
-rw-r--r-- 1 parmentier layers 9638 Feb 2 16:07 Figure2b_boxplot_scaling_by_tiles_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
830 |
-rw-r--r-- 1 parmentier layers 9606 Feb 2 16:07 Figure2b_boxplot_scaling_by_tiles_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
831 |
-rw-r--r-- 1 parmentier layers 4925 Feb 2 16:07 Figure3a_boxplot_overall_region_with_oultiers_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
832 |
-rw-r--r-- 1 parmentier layers 4527 Feb 2 16:07 Figure3b_boxplot_overall_region_scaling_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
833 |
-rw-r--r-- 1 parmentier layers 5193 Feb 2 16:07 Figure3a_boxplot_overall_region_with_oultiers_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
834 |
-rw-r--r-- 1 parmentier layers 4522 Feb 2 16:07 Figure3b_boxplot_overall_region_scaling_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
835 |
-rw-r--r-- 1 parmentier layers 6079 Feb 2 16:07 Figure5_ac_metrics_ranked_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
836 |
-rw-r--r-- 1 parmentier layers 6251 Feb 2 16:07 Figure5_ac_metrics_ranked_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
837 |
-rw-r--r-- 1 parmentier layers 120492 Feb 2 16:08 Figure6_ac_metrics_map_centroids_tile_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
838 |
-rw-r--r-- 1 parmentier layers 120345 Feb 2 16:08 Figure6_ac_metrics_map_centroids_tile_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
839 |
-rw-r--r-- 1 parmentier layers 88938 Feb 2 16:09 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_367_global_analyses_overall_assessment_reg4_01272016.png |
|
840 |
-rw-r--r-- 1 parmentier layers 89437 Feb 2 16:09 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_365_global_analyses_overall_assessment_reg4_01272016.png |
|
841 |
-rw-r--r-- 1 parmentier layers 89284 Feb 2 16:10 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_300_global_analyses_overall_assessment_reg4_01272016.png |
|
842 |
-rw-r--r-- 1 parmentier layers 32506 Feb 2 16:10 Figure7b_number_daily_predictions_per_models_global_analyses_overall_assessment_reg4_01272016.png |
|
843 |
-rw-r--r-- 1 parmentier layers 13970 Feb 2 16:10 Figure7c_histogram_number_daily_predictions_per_models_global_analyses_overall_assessment_reg4_01272016.png |
|
844 |
-rw-r--r-- 1 parmentier layers 12726 Feb 2 16:11 Figure8a_boxplot_overall_separated_by_region_with_oultiers__global_analyses_overall_assessment_reg4_01272016.png |
|
845 |
-rw-r--r-- 1 parmentier layers 12061 Feb 2 16:11 Figure8b_boxplot_overall_separated_by_region_scaling__global_analyses_overall_assessment_reg4_01272016.png |
|
846 |
-rw-r--r-- 1 parmentier layers 10851 Feb 2 16:11 Figure8c_boxplot_overall_separated_by_region_with_oultiers_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
847 |
-rw-r--r-- 1 parmentier layers 9814 Feb 2 16:11 Figure8d_boxplot_overall_separated_by_region_scaling_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
848 |
-rw-r--r-- 1 parmentier layers 11599 Feb 2 16:11 Figure8c_boxplot_overall_separated_by_region_with_oultiers_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
849 |
-rw-r--r-- 1 parmentier layers 9597 Feb 2 16:11 Figure8d_boxplot_overall_separated_by_region_scaling_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
757 | 850 |
|
758 |
col_model_name <- c(NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_kr","mod1","mod_kr","mod1","mod_kr", |
|
759 |
"mod1","mod_kr","mod1","mod1","mod1","mod1","mod1","mod1",NA,NA,"mod1","mod1") |
|
851 |
|
|
760 | 852 |
col_reg <- rep(region_name,length(list_outfiles)) |
761 | 853 |
col_year_predicted <- rep(year_predicted,length(list_outfiles)) |
762 | 854 |
|
Also available in: Unified diff
part2 assessment figure production debugging of errors related to shapefiles and lattice