Project

General

Profile

« Previous | Next » 

Revision 0d1b5196

Added by Benoit Parmentier almost 9 years ago

part2 assessment figure production debugging of errors related to shapefiles and lattice

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 01/12/2016            
8
#MODIFIED ON: 02/01/2016            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap 
......
19 19
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh 
20 20
#
21 21
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015
22
#setfacl -Rm user:aguzman4:rwx /nobackupp8/bparmen1/output_run_global_analyses_pred_12282015
22 23

  
23 24
#################################################################################################
24 25

  
......
221 222
  try(tb$reg <- tb$reg.x)
222 223
  try(summary_metrics_v$year_predicted <- summary_metrics_v$year_predicted.x)
223 224
  try(summary_metrics_v$reg <- summary_metrics_v$reg.x)  
225
  try(summary_metrics_v$lat <- summary_metrics_v$lat.x)
226
  try(summary_metrics_v$lon <- summary_metrics_v$lon.x)
224 227
  #tb_all <- tb
225 228
  #summary_metrics_v_all <- summary_metrics_v 
226 229
  
......
310 313
    shp1 <- shps_tiles[[i]]
311 314
    pt <- centroids_pts[[i]]
312 315
    if(!inherits(shp1,"try-error")){
313
      plot(shp1,add=T,border="blue")
316
      plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX
314 317
      #plot(pt,add=T,cex=2,pch=5)
315 318
      label_id <- df_tile_processed$tile_id[i]
316
      text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"))
319
      text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif")
317 320
    }
318 321
  }
319 322
  #title(paste("Tiles ", tile_size,region_name,sep=""))
320
  
323
  #plot(shp1,add=T,border="blue",usePolypath = FALSE) #,add=T,
324
  #plot(pt,add=T,cex=2,pch=5)
325
  #label_id <- df_tile_processed$tile_id[i]
326
  #text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif")
321 327
  dev.off()
322 328
  
323 329
  #unique(summaty_metrics$tile_id)
......
374 380
  ###############
375 381
  ### Figure 3: boxplot of average RMSE by model acrosss all tiles
376 382
  
383
  #Ok fixed..now selection of model but should also offer an option for using both models!! so make this a function!!
377 384
  for(i in  1:length(model_name)){ #there are two models!!
378 385
    ## Figure 3a
379 386
    res_pix <- 480
......
383 390
    png(filename=paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep=""),
384 391
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
385 392
    
386
    boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod)
387
    title("RMSE per model over all tiles")
393
    #boxplot(rmse~pred_mod,data=tb)#,names=tb$pred_mod)
394
    boxplot(rmse~pred_mod,data=subset(tb,tb$pred_mod==model_name[i]))#,names=tb$pred_mod)
395
    title(paste("RMSE with outliers for all tiles: ",model_name[i],sep=""))
388 396
    dev.off()
389 397
    list_outfiles[[counter_fig+1]] <- paste("Figure3a_boxplot_overall_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
390 398
    
391 399
    ## Figure 3b
392 400
    png(filename=paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep=""),
393 401
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
394
    
395
    boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
396
    title("RMSE per model over all tiles")
397
    
402
    #boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
403
    boxplot(rmse~pred_mod,data=subset(tb,tb$pred_mod==model_name[i]),ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
404
    #title("RMSE per model over all tiles")
405
    title(paste("RMSE with scaling for all tiles: ",model_name[i],sep=""))
398 406
    dev.off()
399 407
    list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
400 408
  }
401 409
  counter_fig <- counter_fig + length(model_name)
402
  
410

  
403 411
  ################ 
404 412
  ### Figure 4: plot predicted tiff for specific date per model
405 413
  
......
491 499
    png(filename=paste("Figure6_ac_metrics_map_centroids_tile_",model_name[i],"_",out_suffix,".png",sep=""),
492 500
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
493 501
    
494
    #coordinates(ac_mod) <- ac_mod[,c("lon","lat")] 
495
    coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later
502
    coordinates(ac_mod) <- ac_mod[,c("lon","lat")] 
503
    #coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later
496 504
    p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
497 505
    #title("(a) Mean for 1 January")
498 506
    p <- bubble(ac_mod,"rmse",main=paste("Average RMSE per tile and by ",model_name[i]))
......
509 517
    list_outfiles[[counter_fig+i]] <- fig_filename
510 518
  }
511 519
  counter_fig <- counter_fig+length(model_name)
512
  
520

  
513 521
  
514 522
  ######################
515 523
  ### Figure 7: Number of predictions: daily and monthly
......
522 530
  sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info
523 531
  
524 532
  #coordinates
525
  #try(coordinates(summary_metrics_v) <- c("lon","lat"))
526
  try(coordinates(summary_metrics_v) <- c("lon.y","lat.y"))
533
  try(coordinates(summary_metrics_v) <- c("lon","lat"))
534
  #try(coordinates(summary_metrics_v) <- c("lon.y","lat.y"))
527 535
  
528 536
  #threshold_missing_day <- c(367,365,300,200)
529 537
  
......
544 552
    
545 553
    #summary_metrics_v$n_missing <- summary_metrics_v$n == 365
546 554
    #summary_metrics_v$n_missing <- summary_metrics_v$n < 365
547
    summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i]
555
    summary_metrics_v$n_missing <- as.numeric(summary_metrics_v$n < threshold_missing_day[i])
548 556
    summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1")
549 557
    
550
    #res_pix <- 1200
551
    res_pix <- 960
552
    
553
    col_mfrow <- 1
554
    row_mfrow <- 1
555 558
    fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
556 559
                       "_",out_suffix,".png",sep="")
557
    png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
560

  
561
    if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!!
562
      
563
      #res_pix <- 1200
564
      res_pix <- 960
565
      col_mfrow <- 1
566
      row_mfrow <- 1
567
      png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
558 568
                       "_",out_suffix,".png",sep=""),
559 569
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
560 570
    
561
    model_name[j]
571
      model_name[j]
562 572
    
563
    p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
564
    #title("(a) Mean for 1 January")
565
    p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
573
      p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black'))
574
      #title("(a) Mean for 1 January")
575
      p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ",
566 576
                                                                threshold_missing_day[i]))
567
    p1 <- p+p_shp
568
    try(print(p1)) #error raised if number of missing values below a threshold does not exist
569
    dev.off()
570
    
577
      p1 <- p+p_shp
578
      try(print(p1)) #error raised if number of missing values below a threshold does not exist
579
      dev.off()
580

  
581
    } 
582
     
571 583
    list_outfiles[[counter_fig+i]] <- fig_filename
572 584
  }
573 585
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
574
  
586

  
575 587
  ### Potential
576 588
  png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
577 589
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
......
585 597
  
586 598
  table(tb$pred_mod)
587 599
  table(tb$index_d)
588
  table(subset(tb,pred_mod!="mod_kr"))
600
  #table(subset(tb,pred_mod!="mod_kr"))
589 601
  table(subset(tb,pred_mod=="mod1")$index_d)
590 602
  #aggregate()
591 603
  tb$predicted <- 1
592 604
  test <- aggregate(predicted~pred_mod+tile_id,data=tb,sum)
593
  xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test),
594
                                                  pred_mod!="mod_kr"),type="h")
605
  #xyplot(predicted~pred_mod | tile_id,data=subset(as.data.frame(test),
606
  #                                                pred_mod!="mod_kr"),type="h")
595 607
  
596 608
  as.character(unique(test$tile_id)) #141 tiles
597 609
  
......
628 640
  ##### Figure 8: Breaking down accuracy by regions!! #####
629 641
  
630 642
  #summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id")
643
  ##First plot with all models together
631 644
  
632 645
  ## Figure 8a
633 646
  res_pix <- 480
634 647
  col_mfrow <- 1
635 648
  row_mfrow <- 1
636 649
  
637
  png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_","_",out_suffix,".png",sep=""),
650
  png(filename=paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep=""),
638 651
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
639 652
  
640 653
  p<- bwplot(rmse~pred_mod | reg, data=tb,
641
             main="RMSE per model and region over all tiles")
654
             main="RMSE per model and region over all tiles with outliers")
642 655
  print(p)
643 656
  dev.off()
644 657
  
645
  list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
658
  list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep="")
646 659
  counter_fig <- counter_fig + 1
647 660
  
648 661
  ## Figure 8b
649
  png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_","_",out_suffix,".png",sep=""),
662
  png(filename=paste("Figure8b_boxplot_overall_separated_by_region_scaling_",out_suffix,".png",sep=""),
650 663
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
651 664
  
652
  boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
653
  title("RMSE per model over all tiles")
665
  #boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
666
  #title("RMSE per model over all tiles")
654 667
  p<- bwplot(rmse~pred_mod | reg, data=tb,ylim=c(0,5),
655
             main="RMSE per model and region over all tiles")
668
             main="RMSE per model and region over all tiles with scaling")
656 669
  print(p)
657 670
  dev.off()
658 671
  
659 672
  list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
660 673
  counter_fig <- counter_fig + 1
661 674
  
662
  ## Select mod1 only now
663
  tb_subset <- subset(tb,model_name=="mod1")
664
  ## Figure 8c
675
  ##Second, plot for each model separately
665 676
  
666
  res_pix <- 480
667
  col_mfrow <- 1
668
  row_mfrow <- 1
677
  for(i in 1:length(model_name)){
678
    
679
    tb_subset <- subset(tb,pred_mod==model_name[i])#mod1 is i=1, mod_kr is last
680
    ## Figure 8c
681
  
682
    res_pix <- 480
683
    col_mfrow <- 1
684
    row_mfrow <- 1
669 685
  
670
  png(filename=paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_","mod1","_",out_suffix,".png",sep=""),
686
    fig_filename <- paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
687
    png(filename=fig_filename,
671 688
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
672 689
  
673
  p<- bwplot(rmse~pred_mod | reg, data=tb_subset,
674
             main="RMSE per model and region over all tiles")
675
  print(p)
676
  dev.off()
690
    p<- bwplot(rmse~pred_mod | reg, data=tb_subset,
691
             main="RMSE per model and region over all tiles with outliers")
692
    print(p)
693
    dev.off()
677 694
  
678
  list_outfiles[[counter_fig+1]] <- paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
679
  counter_fig <- counter_fig + 1
695
    list_outfiles[[counter_fig+1]] <- fig_filename
696
    counter_fig <- counter_fig + 1
680 697
  
681
  ## Figure 8d
682
  png(filename=paste("Figure8d_boxplot_overall_separated_by_region_scaling_","mod1","_",out_suffix,".png",sep=""),
698
    ## Figure 8d
699
    fig_filename <- paste("Figure8d_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
700
    png(filename=fig_filename,
683 701
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
684 702
  
685
  boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
686
  title("RMSE per model over all tiles")
687
  p<- bwplot(rmse~pred_mod | reg, data=tb_subset,ylim=c(0,5),
688
             main="RMSE per model and region over all tiles")
689
  print(p)
690
  dev.off()
703
    #boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
704
    #title("RMSE per model over all tiles")
705
    p<- bwplot(rmse~pred_mod | reg, data=tb_subset,ylim=c(0,5),
706
             main="RMSE per model and region over all tiles with scaling")
707
    print(p)
708
    dev.off()
691 709
  
692
  list_outfiles[[counter_fig+1]] <- paste("Figure8d_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
693
  counter_fig <- counter_fig + 1
710
    list_outfiles[[counter_fig+1]] <- fig_filename
711
    counter_fig <- counter_fig + 1
694 712

  
713
  }
714
 
695 715
  #####################################################
696 716
  #### Figure 9: plotting boxplot by year and regions ###########
697 717
  
......
727 747
  ############## Collect information from assessment ##########
728 748
  
729 749
  # This is hard coded and can be improved later on for flexibility. It works for now...                                                                 
730
  comments_str <- c("tile processed for the region",
750
  comments_str <- 
751
c("tile processed for the region",
731 752
  "boxplot with outliers",                                                          
732 753
  "boxplot with outliers",
733 754
  "boxplot scaling by tiles",
......
751 772
  "boxplot overall separated by region with_outliers",
752 773
  "boxplot overall separated by region with_scaling")
753 774

  
754
  figure_no <- c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3a","figure_3b","figure_3b",
775
                                            model_name=col_model_name,
776
                                            reg=col_reg,
777
                                            year_predicted=col_year_predicted,
778
                                            filename=unlist(list_outfiles))
779
    comments_str <- 
780
  #Should have this at the location of the figures!!! will be done later?    
781
  r1 <-c("figure_1","tile processed for the region",NA,region_name,year_predicted,list_outfiles[[1]])
782
  r2 <-c("figure_2a","boxplot with outliers","mod1",region_name,year_predicted,list_outfiles[[2]])  
783
  r3 <-c("figure_2a","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[3]])  
784
  r4 <-c("figure_2b","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[4]])  
785
  r5 <-c("figure_2b","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[5]])  
786
  r6 <-c("figure_3a","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[6]])  
787
  r7 <-c("figure_3b","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[7]])  
788
  r8 <-c("figure_3a","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[8]])
789
  r9 <-c("figure_3b","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[9]])  
790

  
791
  NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_1","mod_kr","mod_kr",
792

  
793
  
794
  c("tile processed for the region",
795
  "boxplot with outliers",                                                          
796
  "boxplot with outliers",
797
  "boxplot scaling by tiles",
798
  "boxplot scaling by tiles",
799
  "boxplot overall region with outliers",
800
  "boxplot overall region with scaling",
801
  "boxplot overall region with outliers",
802
  "boxplot overall region with scaling",
803
  "Barplot of accuracy metrics ranked by tile",
804
  "Barplot of accuracy metrics ranked by tile",
805
  "Average accuracy metrics map at centroids",
806
  "Average accuracy metrics map at centroids",
807
  "Number of missing day threshold1 map centroids",
808
  "Number of missing day threshold2 map centroids",
809
  "Number of missing day threshold3 map centroids",
810
  "Number of missing day threshold4 map centroids",
811
  "number_daily_predictions_per_model",
812
  "histogram number_daily_predictions_per_models",
813
  "boxplot overall separated by region with_outliers",
814
  "boxplot overall separated by region with_scaling",
815
  "boxplot overall separated by region with_outliers",
816
  "boxplot overall separated by region with_scaling")
817

  
818

  
819
  figure_no <- c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3b","figure_3a","figure_3b",
755 820
                 "figure_5", "figure_5","figure_6","figure_6","Figure_7a","Figure_7a","Figure_7a","Figure_7a","Figure_7b",
756
                 "Figure_7c","Figure 8a","Figure 8a","Figure 8b","Figure 8b")
821
                 "Figure_7c","Figure 8a","Figure 8b","Figure 8c","Figure 8d","Figure 8c","Figure 8d")
822

  
823
  col_model_name <- c(NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_1","mod_kr","mod_kr",
824
                      "mod1","mod_kr","mod1","mod_kr","mod1","mod1","mod1","mod1",NA,
825
                      NA,NA,NA,"mod1","mod1","mod_kr","mod_kr")
826
  
827
-rw-r--r-- 1 parmentier layers  14441 Feb  2 16:06 Figure2a_boxplot_with_oultiers_by_tiles_mod1_global_analyses_overall_assessment_reg4_01272016.png
828
-rw-r--r-- 1 parmentier layers  13617 Feb  2 16:06 Figure2a_boxplot_with_oultiers_by_tiles_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
829
-rw-r--r-- 1 parmentier layers   9638 Feb  2 16:07 Figure2b_boxplot_scaling_by_tiles_mod1_global_analyses_overall_assessment_reg4_01272016.png
830
-rw-r--r-- 1 parmentier layers   9606 Feb  2 16:07 Figure2b_boxplot_scaling_by_tiles_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
831
-rw-r--r-- 1 parmentier layers   4925 Feb  2 16:07 Figure3a_boxplot_overall_region_with_oultiers_mod1_global_analyses_overall_assessment_reg4_01272016.png
832
-rw-r--r-- 1 parmentier layers   4527 Feb  2 16:07 Figure3b_boxplot_overall_region_scaling_mod1_global_analyses_overall_assessment_reg4_01272016.png
833
-rw-r--r-- 1 parmentier layers   5193 Feb  2 16:07 Figure3a_boxplot_overall_region_with_oultiers_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
834
-rw-r--r-- 1 parmentier layers   4522 Feb  2 16:07 Figure3b_boxplot_overall_region_scaling_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
835
-rw-r--r-- 1 parmentier layers   6079 Feb  2 16:07 Figure5_ac_metrics_ranked_mod1_global_analyses_overall_assessment_reg4_01272016.png
836
-rw-r--r-- 1 parmentier layers   6251 Feb  2 16:07 Figure5_ac_metrics_ranked_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
837
-rw-r--r-- 1 parmentier layers 120492 Feb  2 16:08 Figure6_ac_metrics_map_centroids_tile_mod1_global_analyses_overall_assessment_reg4_01272016.png
838
-rw-r--r-- 1 parmentier layers 120345 Feb  2 16:08 Figure6_ac_metrics_map_centroids_tile_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
839
-rw-r--r-- 1 parmentier layers  88938 Feb  2 16:09 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_367_global_analyses_overall_assessment_reg4_01272016.png
840
-rw-r--r-- 1 parmentier layers  89437 Feb  2 16:09 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_365_global_analyses_overall_assessment_reg4_01272016.png
841
-rw-r--r-- 1 parmentier layers  89284 Feb  2 16:10 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_300_global_analyses_overall_assessment_reg4_01272016.png
842
-rw-r--r-- 1 parmentier layers  32506 Feb  2 16:10 Figure7b_number_daily_predictions_per_models_global_analyses_overall_assessment_reg4_01272016.png
843
-rw-r--r-- 1 parmentier layers  13970 Feb  2 16:10 Figure7c_histogram_number_daily_predictions_per_models_global_analyses_overall_assessment_reg4_01272016.png
844
-rw-r--r-- 1 parmentier layers  12726 Feb  2 16:11 Figure8a_boxplot_overall_separated_by_region_with_oultiers__global_analyses_overall_assessment_reg4_01272016.png
845
-rw-r--r-- 1 parmentier layers  12061 Feb  2 16:11 Figure8b_boxplot_overall_separated_by_region_scaling__global_analyses_overall_assessment_reg4_01272016.png
846
-rw-r--r-- 1 parmentier layers  10851 Feb  2 16:11 Figure8c_boxplot_overall_separated_by_region_with_oultiers_mod1_global_analyses_overall_assessment_reg4_01272016.png
847
-rw-r--r-- 1 parmentier layers   9814 Feb  2 16:11 Figure8d_boxplot_overall_separated_by_region_scaling_mod1_global_analyses_overall_assessment_reg4_01272016.png
848
-rw-r--r-- 1 parmentier layers  11599 Feb  2 16:11 Figure8c_boxplot_overall_separated_by_region_with_oultiers_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
849
-rw-r--r-- 1 parmentier layers   9597 Feb  2 16:11 Figure8d_boxplot_overall_separated_by_region_scaling_mod_kr_global_analyses_overall_assessment_reg4_01272016.png
757 850

  
758
  col_model_name <- c(NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_kr","mod1","mod_kr","mod1","mod_kr",
759
                  "mod1","mod_kr","mod1","mod1","mod1","mod1","mod1","mod1",NA,NA,"mod1","mod1")
851
  
760 852
  col_reg <- rep(region_name,length(list_outfiles))
761 853
  col_year_predicted <- rep(year_predicted,length(list_outfiles))
762 854
  

Also available in: Unified diff