Project

General

Profile

« Previous | Next » 

Revision 0fe1b6fb

Added by Benoit Parmentier over 10 years ago

run5 assessment NEX part2 with 3 set of k combination

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 08/16/2014            
8
#MODIFIED ON: 08/28/2014            
9 9
#Version: 3
10 10
#PROJECT: Environmental Layers project     
11
#COMMENTS: analyses for run 3 global using 2 specific tiles
11
#COMMENTS: analyses for run 5 global using 6 specific tiles
12 12
#################################################################################################
13 13

  
14 14
### Loading R library and packages        
......
69 69
#on ATLAS
70 70
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
71 71
#parent output dir : contains subset of the data produced on NEX
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run4_global_analyses_08142014/output20Deg"
72
in_dir1 <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output20Deg"
73 73
# parent output dir for the curent script analyes
74 74
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run4_global_analyses_08142014/"
75
out_dir <-"/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/"
76 76
# input dir containing shapefiles defining tiles
77
in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/output/subset/shapefiles"
77
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles"
78 78

  
79 79
#On NEX
80 80
#contains all data from the run by Alberto
......
85 85

  
86 86
y_var_nay_var_name <- "dailyTmax"
87 87
interpolation_method <- c("gam_CAI")
88
out_prefix<-"run4_global_analyses_08142014"
88
out_prefix<-"run5_global_analyses_08252014"
89 89

  
90 90

  
91 91
#out_dir <-paste(out_dir,"_",out_prefix,sep="")
......
110 110
#lf_tables <- list.files(out_dir,)
111 111
summary_metrics_v <- read.table(file=file.path(out_dir,paste("summary_metrics_v2_NA_",out_prefix,".txt",sep="")),sep=",")
112 112
tb <- read.table(file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",")
113
tb_s <- read.table(file=file.path(out_dir,paste("tb_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
114

  
115
tb_month_s_<- read.table(file=file.path(out_dir,paste("tb_month_diagnostic_s_NA","_",out_prefix,".txt",sep="")),sep=",")
116
tb_month_s <- read.table("tb_month_diagnostic_s_NA_run5_global_analyses_08252014.txt",sep=",")
113 117
pred_data_month_info <- read.table(file=file.path(out_dir,paste("pred_data_month_info_",out_prefix,".txt",sep="")),sep=",")
114 118
pred_data_day_info <- read.table(file=file.path(out_dir,paste("pred_data_day_info_",out_prefix,".txt",sep="")),sep=",")
115 119
df_tile_processed <- read.table(file=file.path(out_dir,paste("df_tile_processed_",out_prefix,".txt",sep="")),sep=",")
......
129 133

  
130 134
### First get background map to display where study area is located
131 135
#can make this more general later on..       
132
if region_name=="USA"{
136
if (region_name=="USA"){
133 137
  usa_map <- getData('GADM', country='USA', level=1) #Get US map
134 138
  #usa_map <- getData('GADM', country=region_name,level=1) #Get US map, this is not working right now
135 139
  usa_map <- usa_map[usa_map$NAME_1!="Alaska",] #remove Alaska
136 140
  reg_layer <- usa_map[usa_map$NAME_1!="Hawaii",] #remove Hawai 
137 141
}
138 142

  
139
if region_name=="world"{
143
if (region_name=="world"){
140 144
  #http://www.diva-gis.org/Data
141 145
  countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp"
142 146
  path_to_shp <- dirname(countries_shp)
......
150 154
shps_tiles <- vector("list",length(list_shp_reg_files))
151 155
#collect info: read in all shapfiles
152 156
#This is slow...make a function and use mclapply??
157

  
153 158
for(i in 1:length(list_shp_reg_files)){
154 159
  path_to_shp <- dirname(list_shp_reg_files[[i]])
160
  path_to_shp <- in_dir1 
155 161
  layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]]))
156 162
  shp1 <- readOGR(path_to_shp, layer_name)
157 163
  #shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
......
285 291

  
286 292

  
287 293
##### Diagnostic gam
294
####
295
gam_diag_10x10 <- read.table("gam_diagnostic_10x10_df_run4_global_analyses_08142014.txt",sep=",")
296
gam_diag_10x10$month <- as.factor(gam_diag_10x10$month)
288 297

  
289
gam_diagnostic_df
290

  
291
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod1"),main="mod1 and term=s(lat,lon)",ylab="RMSE_f",xlab="k")
292
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod2"),main="mod2 and term=s(lat,lon)",ylab="RMSE_f",xlab="k")
293

  
294
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod1"),main="mod1 and term=s(elev_s)",ylab="RMSE_f",xlab="k")
295
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod2"),main="mod2 and term=s(elev_s)",ylab="RMSE_f",xlab="k")
296

  
297
boxplot(rmse~k,data=subset(gam_diagnostic_df,pred_mod=="mod2"),main="mod2 and term=s(LST)",ylab="RMSE_f",xlab="k")
298

  
299
#boxplot(rmse~pred_mod,data=tb,ylim=c(0,5),outline=FALSE)#,names=tb$pred_mod)
300
#title("RMSE per model over all tiles")
301
#bwplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2"),)
302
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2"),type="p")
303
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod1"),type="p")
304
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod1" & tile_id=="tile_7"),type="b")
305
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2" & tile_id=="tile_7"),type="b")
306
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod1" & tile_id=="tile_8"),type="b")
307
xyplot(rmse~k | term + month,data=subset(gam_diagnostic_df,pred_mod=="mod2" & tile_id=="tile_8"),type="b")
308

  
309
xyplot(rmse~k | term + month,group=tile_id ,data=subset(gam_diagnostic_df,pred_mod=="mod1"),type="b",
310
       auto.key=list(space = "top", cex=1.0,columns=8))
311
dev.off()
312

  
313

  
298
xyplot(rmse~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
299
                                           pred_mod!="mod_kr"),type="b")
314 300

  
315
plot(n~tile_id,data=gam_diagnostic_df,type="h")
301
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
302
                                           pred_mod!="mod_kr"),type="h")
316 303

  
317
## Experimenting
318
list_mod <- load_obj(lf_diagnostic_obj$tile_1[2])$list_mod
319
data_training_lf <- as.data.frame(list_mod[[1]]$model)
320
dim(data_training_lf) #is 13
321
mod_t1 <-gam(y_var ~ s(lat,lon,k=6) + s(elev_s,k=4) + s(LST,k=4) , data= data_training_lf)
322
mod_t2 <-gam(y_var ~ s(lat,lon,k=5) + s(elev_s,k=5) + s(LST,k=5) , data= data_training_lf)
304
xyplot(n~pred_mod | tile_id,data=subset(as.data.frame(summary_metrics_v),
305
                                           pred_mod!="mod_kr"),type="h")
323 306

  
324
list_mod <- load_obj(lf_diagnostic_obj$tile_7[4])$list_mod
325
data_training_lf <- as.data.frame(list_mod[[1]]$model)
326
dim(data_training_lf) #is 13
327
mod_t1 <-gam(y_var ~ s(lat,lon,k=6) + s(elev_s,k=4) + s(LST,k=4) , data= data_training_lf)
328
mod_t2 <-gam(y_var ~ s(lat,lon,k=5) + s(elev_s,k=5) + s(LST,k=5) , data= data_training_lf)
307
xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s),
308
                                           pred_mod!="mod_kr"),type="h")
329 309

  
330 310
# 
331 311
## Figure 3b

Also available in: Unified diff