1
|
##############################################################################################
|
2
|
#
|
3
|
# extractDemSubimages
|
4
|
#
|
5
|
# R script extracts and saves subimages from various inputs to the 'image boundary analysis';
|
6
|
# also produces 'difference images' by subtracting CDEM components from other DEM components.
|
7
|
# Output files written as GeoTiff files.
|
8
|
#
|
9
|
# Author: Rick Reeves, NCEAS
|
10
|
# May 9, 2011
|
11
|
##############################################################################################
|
12
|
#
|
13
|
extractDemSubimages <- function()
|
14
|
{
|
15
|
require(raster)
|
16
|
require(rgdal)
|
17
|
|
18
|
#inputRasterMerge <- raster(sFirstImageName)
|
19
|
#inputSecondRaster <- raster(sSecondImageName)
|
20
|
|
21
|
inputRasterAster <- raster("/data/project/organisms/rcr/AsterCgiarMerge/mergeCgiarAsterBdyASTER_BLEven.tif")
|
22
|
inputRasterSRTM <- raster("/data/project/organisms/rcr/AsterCgiarMerge/mergeCgiarAsterBdySRTM_BLEven.tif")
|
23
|
inputRasterMerge <- raster("/data/project/organisms/rcr/ValidateBoundary/mergeCgiarAsterBdyTuesdayClip.tif")
|
24
|
inputRasterCDEM <- raster("/data/project/organisms/rcr/ValidateBoundary/CDEMMosCgiarAsterBdy_BLEven.tif")
|
25
|
|
26
|
inputCdemAster24Row <- raster("/data/project/organisms/rcr/ValidateBoundary/EdgeAsterCDEM24row.tif")
|
27
|
inputCdemSrtm24Row <- raster("/data/project/organisms/rcr/ValidateBoundary/EdgeSrtmCDEM24row.tif")
|
28
|
#
|
29
|
# Difference image for entire merged image takes a while to create,
|
30
|
# so we created it once, now read it back in.
|
31
|
#
|
32
|
rDeltaWhole <- raster("/data/project/organisms/rcr/ValidateBoundary/DeltaEntireImage.tif")
|
33
|
rDeltaWhole@data@values <-getValues(rDeltaWhole)
|
34
|
|
35
|
# Create extent objects used to extract raster subimges.
|
36
|
# The object will be centered along the 60 degree North latitude line,
|
37
|
# and have varying depths (number of rows).
|
38
|
# The Western Canada study area runs from -135 (west) to -100 (west) longitude,
|
39
|
# and 55.0 to 64.00 degrees (north) latitude.
|
40
|
# the ASTER and SRTM/CGIAR image components are merged at the 60 Deg N Latitude line.
|
41
|
|
42
|
eTestAreaExtentAster <- extent(-135.0,-105.0, 60.00009,60.010) # Creates 12 row subimage North of border (All ASTER)
|
43
|
eTestAreaExtentBorder <- extent(-135.0,-105.0, 59.995,60.005) # Creates a 12 row subimage centered on border
|
44
|
eTestAreaExtentSRTM <- extent(-135.0,-105.0, 59.990,60.00) # Creates a 12 row subimage South of border (All SRTM)
|
45
|
|
46
|
eTestAreaExtentAster <- extent(-135.0,-105.0, 60.00009,60.020) # Creates 24 row subimage North of border (All ASTER)
|
47
|
eTestAreaExtentBorder <- extent(-135.0,-105.0, 59.99,60.010) # Creates a 24 row subimage centered on border
|
48
|
eTestAreaExtentSRTM <- extent(-135.0,-105.0, 59.98,60.00) # Creates a 24 row subimage South of border (All SRTM)
|
49
|
|
50
|
|
51
|
# Extract a sub image corresponding to the selected extent.
|
52
|
# Two different alternatives:
|
53
|
# The extract() function returns a vector of cell values,
|
54
|
# the crop() function returns a complete raster* object.
|
55
|
message("extracts")
|
56
|
browser()
|
57
|
vEdgeRegionAster <- extract(inputRasterAster,eTestAreaExtentAster)
|
58
|
rEdgeRegionAster <- crop(inputRasterAster,eTestAreaExtentAster)
|
59
|
vEdgeRegionAsterDelta <- extract(rDeltaWhole,eTestAreaExtentAster)
|
60
|
rEdgeRegionAsterDelta <- crop(rDeltaWhole,eTestAreaExtentAster)
|
61
|
#vEdgeRegionAsterCDEM <- extract(inputRasterCDEM,eTestAreaExtentAster)
|
62
|
#rEdgeRegionAsterCDEM <- crop(inputRasterCDEM,eTestAreaExtentAster)
|
63
|
|
64
|
vEdgeRegionBorder <- extract(inputRasterMerge,eTestAreaExtentBorder)
|
65
|
rEdgeRegionBorder <- crop(inputRasterMerge,eTestAreaExtentBorder)
|
66
|
vEdgeRegionBorderDelta <- extract(rDeltaWhole,eTestAreaExtentBorder)
|
67
|
rEdgeRegionBorderDelta <- crop(rDeltaWhole,eTestAreaExtentBorder)
|
68
|
|
69
|
vEdgeRegionSRTM <- extract(inputRasterSRTM,eTestAreaExtentSRTM)
|
70
|
rEdgeRegionSRTM <- crop(inputRasterSRTM,eTestAreaExtentSRTM)
|
71
|
vEdgeRegionSRTMDelta <- extract(rDeltaWhole,eTestAreaExtentSRTM)
|
72
|
rEdgeRegionSRTMDelta <- crop(rDeltaWhole,eTestAreaExtentSRTM)
|
73
|
#vEdgeRegionSrtmCDEM <- extract(inputRasterCDEM,eTestAreaExtentSRTM)
|
74
|
#rEdgeRegionSrtmCDEM <- crop(inputRasterCDEM,eTestAreaExtentSRTM)
|
75
|
message("differences")
|
76
|
browser()
|
77
|
#
|
78
|
# write these files to disk, get stats.
|
79
|
#
|
80
|
rDeltaEdgeAster <- rEdgeRegionAster - inputCdemAster24Row
|
81
|
rDeltaEdgeBorder <- rEdgeRegionBorder - rEdgeRegionBorderDelta
|
82
|
rDeltaEdgeSRTM <- rEdgeRegionSRTM - rEdgeRegionSrtmCDEM
|
83
|
|
84
|
# Important: In order for the image subtraction to work, the extents
|
85
|
# of the two images must be IDENTICAL. I used ArcMap GIS Raster Crop By Mask
|
86
|
# to create subimages with identical extents.
|
87
|
|
88
|
# Computeexter the difference image for the entire study area, and for the region along
|
89
|
# the boundary (narrow, maybe 10 pixels either side)
|
90
|
|
91
|
# rDeltaEdge <- rEdgeRegionFirst - rEdgeRegionSecond
|
92
|
# May 10 2011 note: One of these statements generates the 'different origin' fatal error.
|
93
|
# my workaround was to create ALL of the subimages used here with gdalwarp, and then
|
94
|
# read them in and subtract them.
|
95
|
# see other R script: OnlyImage Differences.r
|
96
|
# I will create a reproducable example, send to Raster authors.
|
97
|
|
98
|
rDeltaEdgeAster <- rEdgeRegionAster - inputCdemAster24Row
|
99
|
rDeltaEdgeSRTM <- rEdgeRegionSRTM - inputCdemSrtm24Row
|
100
|
|
101
|
#rDeltaWhole <- inputRasterMerge - inputRasterCDEM
|
102
|
#writeRaster(rDeltaWhole,filename="DeltaEntireImage.tif",format="GTiff",datatype="INT2S",overwrite=TRUE)
|
103
|
|
104
|
# Using the large difference image, compute subimagee statistics for areas
|
105
|
# North (ASTER) and South (SRTM) of the boundary. These give us an idea
|
106
|
# re: differences between ASTER and CDEM and CGIAR/SRT and CDEM
|
107
|
# what is raster package way of using subscripts to extract?
|
108
|
|
109
|
# Now, the interesting part: using the boundary difference image, randomly select
|
110
|
# one-degree N-S strips throughout the image, and compare adjacent pixel pairs
|
111
|
# above and below the boundary with pixel pairs straddling the boundary. Subtract
|
112
|
# the pairs, save the collection of (absolute value) of the differences in a vector,
|
113
|
# so that we have a population of differences above, below, and straddling the boundary
|
114
|
# line. Compare the populations.
|
115
|
|
116
|
# get a vector of random column index numbers, constrained by column dimension of image
|
117
|
# Loop three times, sampling pixel pairs from above, below, across the border
|
118
|
|
119
|
nColsToGet <-20000
|
120
|
iDiffVecNorth <- vector(mode="integer",length=nColsToGet)
|
121
|
iDiffVecBorder <- vector(mode="integer",length=nColsToGet)
|
122
|
iDiffVecSouth <- vector(mode="integer",length=nColsToGet)
|
123
|
|
124
|
#colsToGet <-sample(1:50,nColsToGet)
|
125
|
|
126
|
# Note: initially, sample the same columns in all regions to get a profile.
|
127
|
# other 'sample()' calls can be commented out to sample differenct
|
128
|
# coluns in each 'region'.
|
129
|
|
130
|
# iDiffVecxxxx is a population of differences between adjacent cell pairs.
|
131
|
# Compute iDiffVecNorth/Border/South on either side of border, and across it.
|
132
|
# note that North and South samples taken from larger difference image for
|
133
|
# entire mosaic (sub) image; iDiffBorder taken from the edge region extracted
|
134
|
# from the center of the lerger image.
|
135
|
|
136
|
# Remember, we are sampling a PAIR of pixels (same column from two adjacent rows)
|
137
|
# NOTR 5/9: need to rethink these sampling loops for this new version. Comment for now!
|
138
|
#colsToGet <-sample(1:inputRasterMerge@ncols,nColsToGet)
|
139
|
#message("North Sample")
|
140
|
#browser()
|
141
|
# debug
|
142
|
#nColsToGet <- 2
|
143
|
#colsToGet <- c(20,100)
|
144
|
#iFirstRow <- 300
|
145
|
#iCtr = 1
|
146
|
#for (iNextCol in colsToGet)
|
147
|
#{
|
148
|
# rColVec <- cellFromRowCol(rDeltaWhole,iFirstRow:(iFirstRow+1),iNextCol:iNextCol)
|
149
|
# neighborCells <- rDeltaWhole@data@values[rColVec]
|
150
|
# iDiffVecNorth[iCtr] <- neighborCells[2] - neighborCells[1]
|
151
|
# iCtr = iCtr + 1
|
152
|
#}
|
153
|
#
|
154
|
#message("Border Sample - different columns")
|
155
|
#browser()
|
156
|
#colsToGet <-sample(1:inputRasterMerge@ncols,nColsToGet)
|
157
|
#iFirstRow <- 6 # straddle the border of 12 row center section
|
158
|
#iCtr = 1
|
159
|
#for (iNextCol in colsToGet)
|
160
|
#{
|
161
|
# rColVec <- cellFromRowCol(rDeltaEdge,iFirstRow:(iFirstRow+1),iNextCol:iNextCol)
|
162
|
# neighborCells <- rDeltaEdge@data@values[rColVec]
|
163
|
# iDiffVecBorder[iCtr] <- neighborCells[2] - neighborCells[1]
|
164
|
# iCtr = iCtr + 1
|
165
|
#}
|
166
|
##
|
167
|
#message("South Sample - different columns")
|
168
|
##browser()
|
169
|
#colsToGet <-sample(1:inputRasterMerge@ncols,nColsToGet)
|
170
|
#iFirstRow <- 3600
|
171
|
#iCtr = 1
|
172
|
#for (iNextCol in colsToGet)
|
173
|
#{
|
174
|
# rColVec <- cellFromRowCol(rDeltaWhole,iFirstRow:(iFirstRow+1),iNextCol:iNextCol)
|
175
|
# neighborCells <- rDeltaWhole@data@values[rColVec]
|
176
|
# iDiffVecSouth[iCtr] <- neighborCells[2] - neighborCells[1]
|
177
|
# iCtr = iCtr + 1
|
178
|
#}
|
179
|
## Compute iDiffVecs on either side of border, and across it.
|
180
|
#message("Check the cell difference vectors...")
|
181
|
##browser()
|
182
|
|
183
|
# summary stats for each population
|
184
|
|
185
|
#sNorthSum <- sprintf("ASTER sample summary: Min: %f / Median: %d / Mean: %f / Max: %f / Variance: %f sDev: %f",
|
186
|
# min(iDiffVecNorth,na.rm=TRUE),median(iDiffVecNorth,na.rm=TRUE),mean(iDiffVecNorth,na.rm=TRUE),
|
187
|
# max(iDiffVecNorth,na.rm=TRUE),var(iDiffVecNorth,na.rm=TRUE),sd(iDiffVecNorth,na.rm=TRUE))
|
188
|
#
|
189
|
#sBorderSum <- sprintf("Border sample summary: Min: %f / Median: %d / Mean: %f / Max: %f / Variance: %f sDev: %f",
|
190
|
# min(iDiffVecBorder,na.rm=TRUE),median(iDiffVecBorder,na.rm=TRUE),mean(iDiffVecBorder,na.rm=TRUE),
|
191
|
# max(iDiffVecBorder,na.rm=TRUE),var(iDiffVecBorder,na.rm=TRUE),sd(iDiffVecBorder,na.rm=TRUE))
|
192
|
|
193
|
#sSouthSum <- sprintf("STRM sample summary: Min: %f / Median: %d / Mean: %f / Max: %f / Variance: %f sDev: %f",
|
194
|
# min(iDiffVecSouth,na.rm=TRUE),median(iDiffVecSouth,na.rm=TRUE),mean(iDiffVecSouth,na.rm=TRUE),
|
195
|
# max(iDiffVecSouth,na.rm=TRUE),var(iDiffVecSouth,na.rm=TRUE),sd(iDiffVecSouth,na.rm=TRUE))
|
196
|
##
|
197
|
#message(sprintf("statistics for %d N/S adjacent pixel pairs from three mosaic image regions:",nColsToGet))
|
198
|
#message(sNorthSum)
|
199
|
#message(sBorderSum)
|
200
|
#message(sSouthSum)
|
201
|
|
202
|
message("hit key to write output images...")
|
203
|
browser()
|
204
|
|
205
|
writeRaster(rDeltaEdgeSRTM,filename="/data/project/organisms/rcr/ValidateBoundary/EdgeRegionSRTMOnlyDelta24row.tif",format="GTiff",datatype="INT2S",overwrite=TRUE)
|
206
|
writeRaster(rDeltaEdgeAster,filename="/data/project/organisms/rcr/ValidateBoundary/EdgeRegionAsterOnlyDelta24row.tif",format="GTiff",datatype="INT2S",overwrite=TRUE)
|
207
|
|
208
|
# Create this image one time, read it in thereafter.
|
209
|
|
210
|
}
|