Revision 122ba379
Added by Benoit Parmentier about 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 04/14/2015 |
8 |
#MODIFIED ON: 01/01/2016
|
|
8 |
#MODIFIED ON: 01/05/2016
|
|
9 | 9 |
#Version: 5 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses run for reg4 1992 for test of mosaicing using 1500x4500km and other tiles |
... | ... | |
37 | 37 |
|
38 | 38 |
#### FUNCTION USED IN SCRIPT |
39 | 39 |
|
40 |
function_mosaicing <-"global_run_scalingup_mosaicing_function_12192015.R" |
|
41 |
|
|
42 |
in_dir_script <-"/home/parmentier/Data/IPLANT_project/env_layers_scripts" #NCEAS UCSB |
|
43 |
#in_dir_script <- "/nobackupp8/bparmen1/env_layers_scripts" #NASA NEX |
|
44 |
source(file.path(in_dir_script,function_mosaicing)) |
|
45 |
|
|
46 |
load_obj <- function(f) |
|
47 |
{ |
|
48 |
env <- new.env() |
|
49 |
nm <- load(f, env)[1] |
|
50 |
env[[nm]] |
|
51 |
} |
|
52 |
|
|
53 |
create_dir_fun <- function(out_dir,out_suffix){ |
|
54 |
if(!is.null(out_suffix)){ |
|
55 |
out_name <- paste("output_",out_suffix,sep="") |
|
56 |
out_dir <- file.path(out_dir,out_name) |
|
57 |
} |
|
58 |
#create if does not exists |
|
59 |
if(!file.exists(out_dir)){ |
|
60 |
dir.create(out_dir) |
|
61 |
} |
|
62 |
return(out_dir) |
|
63 |
} |
|
40 |
# function_mosaicing <-"global_run_scalingup_mosaicing_function_12192015.R"
|
|
41 |
# |
|
42 |
# #in_dir_script <-"/home/parmentier/Data/IPLANT_project/env_layers_scripts" #NCEAS UCSB
|
|
43 |
# in_dir_script <- "/nobackupp8/bparmen1/env_layers_scripts" #NASA NEX
|
|
44 |
# source(file.path(in_dir_script,function_mosaicing))
|
|
45 |
# |
|
46 |
# load_obj <- function(f)
|
|
47 |
# {
|
|
48 |
# env <- new.env()
|
|
49 |
# nm <- load(f, env)[1]
|
|
50 |
# env[[nm]]
|
|
51 |
# }
|
|
52 |
# |
|
53 |
# create_dir_fun <- function(out_dir,out_suffix){
|
|
54 |
# if(!is.null(out_suffix)){
|
|
55 |
# out_name <- paste("output_",out_suffix,sep="")
|
|
56 |
# out_dir <- file.path(out_dir,out_name)
|
|
57 |
# }
|
|
58 |
# #create if does not exists
|
|
59 |
# if(!file.exists(out_dir)){
|
|
60 |
# dir.create(out_dir)
|
|
61 |
# }
|
|
62 |
# return(out_dir)
|
|
63 |
# }
|
|
64 | 64 |
|
65 | 65 |
############################################ |
66 | 66 |
#### Parameters and constants |
67 | 67 |
|
68 | 68 |
#Data is on ATLAS or NASA NEX |
69 | 69 |
#PARAM 1 |
70 |
in_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NCEAS |
|
71 |
#in_dir <- "/nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NEX |
|
72 |
|
|
73 |
in_dir_tiles <- file.path(in_dir,"tiles") #this is valid both for Atlas and NEX |
|
74 |
y_var_name <- "dailyTmax" #PARAM2 |
|
75 |
interpolation_method <- c("gam_CAI") #PARAM3 |
|
76 |
region_name <- "reg4" #PARAM 4 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
77 |
mosaicing_method <- c("unweighted","use_edge_weights") #PARAM5 |
|
78 |
out_suffix <- paste(region_name,"_","run10_1500x4500_global_analyses_pred_1992_12072015",sep="") #PARAM 6 |
|
79 |
out_suffix_str <- "run10_1500x4500_global_analyses_pred_1992_12072015" #PARAM 7 |
|
80 |
metric_name <- "rmse" #RMSE, MAE etc. #PARAM 8 |
|
81 |
pred_mod_name <- "mod1" #PARAM 9 |
|
82 |
var_pred <- "res_mod1" #used in residuals mapping #PARAM 10 |
|
83 |
|
|
84 |
out_dir <- in_dir #PARAM 11 |
|
85 |
create_out_dir_param <- FALSE #PARAM 12 |
|
86 |
|
|
87 |
#if daily mosaics NULL then mosaicas all days of the year #PARAM 13 |
|
88 |
day_to_mosaic <- c("19920101","19920102","19920103") #,"19920104","19920105") #PARAM9, two dates note in /tiles for now on NEX |
|
89 |
|
|
90 |
#CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
91 |
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
92 |
#proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
|
93 |
|
|
94 |
file_format <- ".tif" #PARAM 14 |
|
95 |
NA_value <- -9999 #PARAM 15 |
|
96 |
NA_flag_val <- NA_value #PARAM 16 |
|
97 |
|
|
98 |
num_cores <- 6 #PARAM 17 |
|
99 |
region_names <- c("reg23","reg4") #selected region names, ##PARAM 18 |
|
100 |
use_autokrige <- F #PARAM 19 |
|
101 |
|
|
102 |
###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20 |
|
103 |
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
104 |
infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
105 |
## All of this is interesting so use df_assessment!! |
|
106 |
df_assessment_files_name <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
107 |
|
|
108 |
#in_dir can be on NEX or Atlas |
|
109 |
|
|
110 |
#python script and gdal on NEX NASA: |
|
111 |
#mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
112 |
#python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" |
|
113 |
#python script and gdal on Atlas NCEAS |
|
114 |
mosaic_python <- "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 26 |
|
115 |
python_bin <- "/usr/bin" #PARAM 27 |
|
116 |
|
|
117 |
algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
118 |
#algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
119 |
match_extent <- "FALSE" #PARAM 29 #try without matching!!! |
|
120 |
|
|
121 |
#for residuals... |
|
122 |
list_models <- NULL #PARAM 30 |
|
123 |
#list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default... |
|
70 |
# in_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NCEAS |
|
71 |
# #in_dir <- "/nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NEX |
|
72 |
# |
|
73 |
# in_dir_tiles <- file.path(in_dir,"tiles") #this is valid both for Atlas and NEX |
|
74 |
# y_var_name <- "dailyTmax" #PARAM2 |
|
75 |
# interpolation_method <- c("gam_CAI") #PARAM3 |
|
76 |
# region_name <- "reg4" #PARAM 4 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
77 |
# mosaicing_method <- c("unweighted","use_edge_weights") #PARAM5 |
|
78 |
# out_suffix <- paste(region_name,"_","run10_1500x4500_global_analyses_pred_1992_12072015",sep="") #PARAM 6 |
|
79 |
# out_suffix_str <- "run10_1500x4500_global_analyses_pred_1992_12072015" #PARAM 7 |
|
80 |
# metric_name <- "rmse" #RMSE, MAE etc. #PARAM 8 |
|
81 |
# pred_mod_name <- "mod1" #PARAM 9 |
|
82 |
# var_pred <- "res_mod1" #used in residuals mapping #PARAM 10 |
|
83 |
# |
|
84 |
# out_dir <- in_dir #PARAM 11 |
|
85 |
# create_out_dir_param <- FALSE #PARAM 12 |
|
86 |
# |
|
87 |
# #if daily mosaics NULL then mosaicas all days of the year #PARAM 13 |
|
88 |
# day_to_mosaic <- c("19920101","19920102","19920103") #,"19920104","19920105") #PARAM9, two dates note in /tiles for now on NEX |
|
89 |
# |
|
90 |
# #CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
91 |
# #CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
92 |
# #proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
|
93 |
# |
|
94 |
# file_format <- ".tif" #PARAM 14 |
|
95 |
# NA_value <- -9999 #PARAM 15 |
|
96 |
# NA_flag_val <- NA_value #PARAM 16 |
|
97 |
# |
|
98 |
# num_cores <- 6 #PARAM 17 |
|
99 |
# region_names <- c("reg23","reg4") #selected region names, ##PARAM 18 |
|
100 |
# use_autokrige <- F #PARAM 19 |
|
101 |
# |
|
102 |
# ###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20 |
|
103 |
# #infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
104 |
# infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
105 |
# ## All of this is interesting so use df_assessment!! |
|
106 |
# df_assessment_files_name <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
107 |
# |
|
108 |
# #in_dir can be on NEX or Atlas |
|
109 |
# |
|
110 |
# #python script and gdal on NEX NASA: |
|
111 |
# #mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
112 |
# #python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" |
|
113 |
# #python script and gdal on Atlas NCEAS |
|
114 |
# mosaic_python <- "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 26 |
|
115 |
# python_bin <- "/usr/bin" #PARAM 27 |
|
116 |
# |
|
117 |
# algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
118 |
# #algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
119 |
# match_extent <- "FALSE" #PARAM 29 #try without matching!!! |
|
120 |
# |
|
121 |
# #for residuals... |
|
122 |
# list_models <- NULL #PARAM 30 |
|
123 |
# #list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default... |
|
124 |
# |
|
125 |
# list_param_run_mosaicing_prediction <- list(in_dir,y_var_name,interpolation_method,region_name, |
|
126 |
# mosaicing_method,out_suffix,out_suffix_str,metric_name,pred_mod_name,var_pred, |
|
127 |
# create_out_dir_param,day_to_mosaic,proj_str,file_format,NA_value,num_cores, |
|
128 |
# region_name,use_autokrige,infile_mask,df_assessment_files_name,mosaic_python, |
|
129 |
# python_bin,algorithm,match_extent,list_models) |
|
130 |
# param_names <- c("in_dir","y_var_name","interpolation_method","region_name", |
|
131 |
# "mosaicing_method","out_suffix","out_suffix_str","metric_name","pred_mod_name","var_pred", |
|
132 |
# "create_out_dir_param","day_to_mosaic","proj_str","file_format","NA_value","num_cores", |
|
133 |
# "region_name","use_autokrige","infile_mask","df_assessment_files_name","mosaic_python", |
|
134 |
# "python_bin","algorithm","match_extent","list_models") |
|
135 |
# names(list_param_run_mosaicing_prediction) <- param_names |
|
124 | 136 |
|
125 | 137 |
########################## START SCRIPT ############################## |
126 | 138 |
|
Also available in: Unified diff
clean up of function mosaicing main function callable from stage 7