Project

General

Profile

« Previous | Next » 

Revision 1230ccc6

Added by Benoit Parmentier over 11 years ago

data preparation, addtional modifications to allow for Oregon and any regions

View differences:

climate/research/oregon/interpolation/Database_stations_covariates_processing_function.R
27 27
  #6) monthly_covar_ghcn_data: ghcn monthly averaged data with covariates for the year range of interpolation (locally projected)
28 28
  
29 29
  #AUTHOR: Benoit Parmentier                                                                       
30
  #DATE: 03/28/2013                                                                                 
30
  #DATE: 04/05/2013                                                                                 
31 31
  #PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363--     
32 32
  #Comments and TODO
33 33
  #-Add buffer option...
34 34
  #-Add output path argument option
35
  #-Add qc flag options
35
  #-Add screening for value predicted: var
36 36
  ##################################################################################################
37 37
  
38 38
  ###Loading R library and packages: should it be read in before???   
......
98 98
  coordinates(dat_stat)<-coords
99 99
  proj4string(dat_stat)<-CRS_locs_WGS84 #this is the WGS84 projection
100 100
  #proj4string(dat_stat)<-CRS_interp
101
  dat_stat2<-spTransform(dat_stat,CRS(CRS_interp))         # Project from WGS84 to new coord. system
101
  interp_area_WGS84 <-spTransform(interp_area,CRS_locs_WGS84)         # Project from WGS84 to new coord. system
102 102
  
103 103
  # Spatial query to find relevant stations
104
  inside <- !is.na(over(dat_stat2, as(interp_area, "SpatialPolygons")))  #Finding stations contained in the current interpolation area
105
  stat_reg<-dat_stat2[inside,]              #Selecting stations contained in the current interpolation area
104
  
105
  inside <- !is.na(over(dat_stat, as(interp_area_WGS84, "SpatialPolygons")))  #Finding stations contained in the current interpolation area
106
  stat_reg<-dat_stat[inside,]              #Selecting stations contained in the current interpolation area
106 107
  
107 108
  ####
108 109
  ##TODO: Add buffer option? 
......
136 137
  
137 138
  data_d <-data_reg  #data_d: daily data containing the query without screening
138 139
  #data_reg <-subset(data_d,mflag=="0" | mflag=="S") #should be input arguments!!
139
  data_reg <-subset(data_d,mflag==qc_flags_stations[1] | mflag==qc_flags_stations[2]) #screening using flags
140
  #Transform the query to be depending on the number of flags
141
  
142
  data_reg <-subset(data_d, mflag %in% qc_flags_stations) #screening using flags
143
  #data_reg2 <-subset(data_d,mflag==qc_flags_stations[1] | mflag==qc_flags_stations[2]) #screening using flags
140 144
  
141 145
  ##################################################################
142 146
  ### STEP 3: Save results and outuput in textfile and a shape file
......
225 229
  
226 230
  #In Venezuela and other regions where there are not many stations...mflag==S should be added..see Durenne etal.2010.
227 231

  
228
  #d<-subset(data_m,mflag=="0" | mflag=="S") #should be input arguments!!
229
  d<-subset(data_m,mflag==qc_flags_stations[1] | mflag==qc_flags_stations[2])
230
  #May need some screeing??? i.e. range of temp and elevation...
232
  #d<-subset(data_m,mflag==qc_flags_stations[1] | mflag==qc_flags_stations[2])
233
  d<-subset(data_m,mflag %in% qc_flags_stations)
234
  
235
  #Add screening here ...May need some screeing??? i.e. range of temp and elevation...
236
  
231 237
  d1<-aggregate(value~station+month, data=d, mean)  #Calculate monthly mean for every station in OR
232 238
  #d2<-aggregate(value~station+month, data=d, length)  #Calculate monthly mean for every station in OR
233 239
  is_not_na_fun<-function(x) sum(!is.na(x)) #count the number of available observation
......
257 263
  stations_val<-extract(s_raster,dst_month,df=TRUE)  #extraction of the information at station location in a data frame
258 264
  #dst_extract<-spCbind(dst_month,stations_val) #this is in sinusoidal from the raster stack
259 265
  dst_extract<-cbind(dst_month,stations_val) #this is in sinusoidal from the raster stack
260
  dst<-dst_extract
266
  dst<-dst_extract #problem!!! two column named elev!!! use elev_s??
261 267
  
262 268
  #browser()
263 269
  coords<- dst[c('x','y')]              #Define coordinates in a data frame, this is the local x,y
......
265 271
  dst<-dst[index,]
266 272
  coords<- dst[c('x','y')]              #Define coordinates in a data frame, this is the local x,y
267 273
  coordinates(dst)<-coords                    #Assign coordinates to the data frame
268
  proj4string(dst)<-projection(s_raster)        #Assign coordinates reference system in PROJ4 format
274
  proj4string(dst)<-CRS_interp        #Assign coordinates reference system in PROJ4 format
275
  
276
  ### ADD SCREENING HERE BEFORE WRITING OUT DATA
277
  #Covariates ok since screening done in covariate script
278
  #screening on var i.e. value, TMIN, TMAX...
279
  
280
  ####
269 281
  
270 282
  ####
271 283
  #write out a new shapefile (including .prj component)

Also available in: Unified diff