Project

General

Profile

Download (20 KB) Statistics
| Branch: | Revision:
1
## Figures associated with MOD35 Cloud Mask Exploration
2

    
3
setwd("~/acrobates/adamw/projects/MOD35C5")
4

    
5
library(raster);beginCluster(10)
6
library(rasterVis)
7
library(rgdal)
8
library(plotKML)
9
library(Cairo)
10
library(reshape)
11
library(rgeos)
12
library(splancs)
13

    
14
## get % cloudy
15
mod09=raster("data/MOD09_2009.tif")
16
names(mod09)="MOD09CF"
17
NAvalue(mod09)=0
18

    
19
mod35c5=raster("data/MOD35_2009.tif")
20
names(mod35c5)="C5MOD35CF"
21
NAvalue(mod35c5)=0
22

    
23
## mod35C6 annual
24
if(!file.exists("data/MOD35C6_2009.tif")){
25
  system("/usr/local/gdal-1.10.0/bin/gdalbuildvrt -a_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -sd 1 -b 1 data/MOD35C6.vrt /home/adamw/acrobates/adamw/projects/interp/data/modis/mod35/summary/*mean.nc ")
26
  system("align.sh data/MOD35C6.vrt data/MOD09_2009.tif data/MOD35C6_2009.kmz")
27
}
28
mod35c6=raster("data/MOD35C6_2009_v1.tif")
29
names(mod35c6)="C6MOD35CF"
30
NAvalue(mod35c6)=255
31

    
32

    
33
## landcover
34
if(!file.exists("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")){
35
  system(paste("/usr/local/gdal-1.10.0/bin/gdalwarp -tr 0.008983153 0.008983153 -r mode -ot Byte -co \"COMPRESS=LZW\"",
36
               " /mnt/data/jetzlab/Data/environ/global/MODIS/MCD12Q1/051/MCD12Q1_051_2009.tif ",
37
               " -t_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" ",
38
               " -te -180.0044166 -60.0074610 180.0044166 90.0022083 ",
39
               "data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif -overwrite ",sep=""))}
40
lulc=raster("data/MCD12Q1_IGBP_2009_051_wgs84_1km.tif")
41

    
42
#  lulc=ratify(lulc)
43
  data(worldgrids_pal)  #load palette
44
  IGBP=data.frame(ID=0:16,col=worldgrids_pal$IGBP[-c(18,19)],
45
    lulc_levels2=c("Water","Forest","Forest","Forest","Forest","Forest","Shrublands","Shrublands","Savannas","Savannas","Grasslands","Permanent wetlands","Croplands","Urban and built-up","Cropland/Natural vegetation mosaic","Snow and ice","Barren or sparsely vegetated"),stringsAsFactors=F)
46
  IGBP$class=rownames(IGBP);rownames(IGBP)=1:nrow(IGBP)
47
  levels(lulc)=list(IGBP)
48
#lulc=crop(lulc,mod09)
49
names(lulc)="MCD12Q1"
50

    
51
## make land mask
52
if(!file.exists("data/land.tif"))
53
  land=calc(lulc,function(x) ifelse(x==0,NA,1),file="data/land.tif",options=c("COMPRESS=LZW","ZLEVEL=9","PREDICTOR=2"),datatype="INT1U",overwrite=T)
54
land=raster("data/land.tif")
55

    
56
## mask cloud masks to land pixels
57
#mod09l=mask(mod09,land)
58
#mod35l=mask(mod35,land)
59

    
60
#####################################
61
### compare MOD43 and MOD17 products
62

    
63
## MOD17
64
#extent(mod17)=alignExtent(mod17,mod09)
65
if(!file.exists("data/MOD17.tif"))
66
system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_mean_00_12.tif data/MOD09_2009.tif data/MOD17.tif")
67
mod17=raster("data/MOD17.tif",format="GTiff")
68
NAvalue(mod17)=65535
69
names(mod17)="MOD17"
70

    
71
if(!file.exists("data/MOD17qc.tif"))
72
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/MOD17/MOD17A3_Science_NPP_Qc_mean_00_12.tif data/MOD09_2009.tif data/MOD17qc.tif")
73
mod17qc=raster("data/MOD17qc.tif",format="GTiff")
74
NAvalue(mod17qc)=255
75
names(mod17qc)="MOD17CF"
76

    
77
## MOD11 via earth engine
78
if(!file.exists("data/MOD11_2009.tif"))
79
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_LST_2009.tif data/MOD09_2009.tif data/MOD11_2009.tif")
80
mod11=raster("data/MOD11_2009.tif",format="GTiff")
81
names(mod11)="MOD11"
82
NAvalue(mod11)=0
83
if(!file.exists("data/MOD11qc_2009.tif"))
84
  system("align.sh ~/acrobates/adamw/projects/interp/data/modis/mod11/2009/MOD11_Pmiss_2009.tif data/MOD09_2009.tif data/MOD11qc_2009.tif")
85
mod11qc=raster("data/MOD11qc_2009.tif",format="GTiff")
86
names(mod11qc)="MOD11CF"
87

    
88

    
89
### Create some summary objects for plotting
90
#difm=v6m-v5m
91
#v5v6compare=stack(v5m,v6m,difm)
92
#names(v5v6compare)=c("Collection 5","Collection 6","Difference (C6-C5)")
93

    
94
### Processing path
95
if(!file.exists("data/MOD35pp.tif"))
96
system("align.sh data/MOD35_ProcessPath.tif data/MOD09_2009.tif data/MOD35pp.tif")
97
pp=raster("data/MOD35pp.tif")
98
NAvalue(pp)=255
99
names(pp)="MOD35pp"
100

    
101

    
102
#hist(dif,maxsamp=1000000)
103
## draw lulc-stratified random sample of mod35-mod09 differences 
104
#samp=sampleStratified(lulc, 1000, exp=10)
105
#save(samp,file="LULC_StratifiedSample_10000.Rdata")
106
#mean(dif[samp],na.rm=T)
107
#Stats(dif,function(x) c(mean=mean(x),sd=sd(x)))
108

    
109

    
110
###
111

    
112
n=100
113
at=seq(0,100,len=n)
114
cols=grey(seq(0,1,len=n))
115
cols=rainbow(n)
116
bgyr=colorRampPalette(c("blue","green","yellow","red"))
117
cols=bgyr(n)
118

    
119
#levelplot(lulcf,margin=F,layers="LULC")
120

    
121

    
122
### Transects
123
r1=Lines(list(
124
  Line(matrix(c(
125
                -61.688,4.098,
126
                -59.251,3.430
127
                ),ncol=2,byrow=T))),"Venezuela")
128
r2=Lines(list(
129
  Line(matrix(c(
130
                133.746,-31.834,
131
                134.226,-32.143
132
                ),ncol=2,byrow=T))),"Australia")
133
r3=Lines(list(
134
  Line(matrix(c(
135
                73.943,27.419,
136
                74.369,26.877
137
                ),ncol=2,byrow=T))),"India")
138
r4=Lines(list(
139
  Line(matrix(c(
140
                -5.164,42.270,
141
                -4.948,42.162
142
                ),ncol=2,byrow=T))),"Spain")
143

    
144
r5=Lines(list(
145
  Line(matrix(c(
146
                33.195,12.512,
147
                33.802,12.894
148
                ),ncol=2,byrow=T))),"Sudan")
149

    
150
r6=Lines(list(
151
  Line(matrix(c(
152
                -63.353,-10.746,
153
                -63.376,-9.310
154
                ),ncol=2,byrow=T))),"Brazil")
155

    
156

    
157
trans=SpatialLines(list(r1,r2,r3,r5),CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs "))
158
### write out shapefiles of transects
159
writeOGR(SpatialLinesDataFrame(trans,data=data.frame(ID=names(trans)),match.ID=F),"output",layer="transects",driver="ESRI Shapefile",overwrite=T)
160

    
161
## buffer transects to get regional values 
162
transb=gBuffer(trans,byid=T,width=0.4)
163

    
164
## make polygons of bounding boxes
165
bb0 <- lapply(slot(transb, "polygons"), bbox)
166
bb1 <- lapply(bb0, bboxx)
167
# turn these into matrices using a helper function in splancs
168
bb2 <- lapply(bb1, function(x) rbind(x, x[1,]))
169
# close the matrix rings by appending the first coordinate
170
rn <- row.names(transb)
171
# get the IDs
172
bb3 <- vector(mode="list", length=length(bb2))
173
# make somewhere to keep the output
174
for (i in seq(along=bb3)) bb3[[i]] <- Polygons(list(Polygon(bb2[[i]])),
175
                   ID=rn[i])
176
# loop over the closed matrix rings, adding the IDs
177
bbs <- SpatialPolygons(bb3, proj4string=CRS(proj4string(transb)))
178

    
179
trd1=lapply(1:length(transb),function(x) {
180
  td=crop(mod11,transb[x])
181
  tdd=lapply(list(mod35c5,mod35c6,mod09,mod17,mod17qc,mod11,mod11qc,lulc,pp),function(l) resample(crop(l,transb[x]),td,method="ngb"))
182
  ## normalize MOD11 and MOD17
183
  for(j in which(do.call(c,lapply(tdd,function(i) names(i)))%in%c("MOD11","MOD17"))){
184
    trange=cellStats(tdd[[j]],range)
185
    tscaled=100*(tdd[[j]]-trange[1])/(trange[2]-trange[1])
186
    tscaled@history=list(range=trange)
187
    names(tscaled)=paste(names(tdd[[j]]),"scaled",collapse="_",sep="_")
188
    tdd=c(tdd,tscaled)
189
  }
190
  return(brick(tdd))
191
})
192

    
193
## bind all subregions into single dataframe for plotting
194
trd=do.call(rbind.data.frame,lapply(1:length(trd1),function(i){
195
  d=as.data.frame(as.matrix(trd1[[i]]))
196
  d[,c("x","y")]=coordinates(trd1[[i]])
197
  d$trans=names(trans)[i]
198
  d=melt(d,id.vars=c("trans","x","y"))
199
  return(d)
200
}))
201

    
202
transd=do.call(rbind.data.frame,lapply(1:length(trans),function(l) {
203
  td=as.data.frame(extract(trd1[[l]],trans[l],along=T,cellnumbers=F)[[1]])
204
  td$loc=extract(trd1[[l]],trans[l],along=T,cellnumbers=T)[[1]][,1]
205
  td[,c("x","y")]=xyFromCell(trd1[[l]],td$loc)
206
  td$dist=spDistsN1(as.matrix(td[,c("x","y")]), as.matrix(td[1,c("x","y")]),longlat=T)
207
  td$transect=names(trans[l])
208
  td2=melt(td,id.vars=c("loc","x","y","dist","transect"))
209
  td2=td2[order(td2$variable,td2$dist),]
210
  # get per variable ranges to normalize
211
  tr=cast(melt.list(tapply(td2$value,td2$variable,function(x) data.frame(min=min(x,na.rm=T),max=max(x,na.rm=T)))),L1~variable)
212
  td2$min=tr$min[match(td2$variable,tr$L1)]
213
  td2$max=tr$max[match(td2$variable,tr$L1)]
214
  print(paste("Finished ",names(trans[l])))
215
  return(td2)}
216
  ))
217

    
218
transd$type=ifelse(grepl("MOD35|MOD09|CF",transd$variable),"CF","Data")
219

    
220

    
221
## comparison of % cloudy days
222
dif_c5_09=mod35c5-mod09
223
#dif_c6_09=mod35c6-mod09
224
#dif_c5_c6=mod35c5-mod35c6
225

    
226
## exploring various ways to compare cloud products
227
t1=trd1[[1]]
228
dif_p=calc(trd1[[1]], function(x) (x[1]-x[3])/(1-x[1]))
229
edge=edge(subset(t1,"MCD12Q1"),classes=T,type="inner")
230
names(edge)="edge"
231
td1=as.data.frame(stack(t1,edge))
232

    
233
cor(td1$MOD17,td1$C5MOD35,use="complete",method="spearman")
234
cor(td1$MOD17[td1$edge==1],td1$C5MOD35[td1$edge==1],use="complete",method="spearman")
235
cor(td1,use="complete",method="spearman")
236
splom(t1)
237
plot(mod17,mod17qc)
238
xyplot(MOD17~C5MOD35CF|edge,data=td1)
239
plot(dif_p)
240

    
241
#rondonia=trd[trd$trans=="Brazil",]
242
#trd=trd[trd$trans!="Brazil",]
243

    
244
at=seq(0,100,leng=100)
245
bgyr=colorRampPalette(c("purple","blue","green","yellow","orange","red","red"))
246
bgrayr=colorRampPalette(c("purple","blue","grey","red","red"))
247
cols=bgyr(100)
248

    
249
## global map
250
library(maptools)
251
coast=map2SpatialLines(map("world", interior=FALSE, plot=FALSE),proj4string=CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"))
252

    
253
g1=levelplot(stack(mod35c5,mod09),xlab=" ",scales=list(x=list(draw=F),y=list(alternating=1)),col.regions=cols,at=at)+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
254
g2=levelplot(dif_c5_09,col.regions=bgrayr(100),at=seq(-70,70,len=100),margin=F,ylab=" ",colorkey=list("right"))+layer(sp.polygons(bbs[1:4],lwd=2))+layer(sp.lines(coast,lwd=.5))
255
trellis.par.set(background=list(fill="white"),panel.background=list(fill="white"))
256
g3=histogram(dif_c5_09,bg="white",col="black",border=NA,scales=list(x=list(at=c(-50,0,50)),y=list(draw=F),cex=1))+layer(panel.abline(v=0,col="red",lwd=2))
257

    
258
### regional plots
259
p1=useOuterStrips(levelplot(value~x*y|variable+trans,data=trd[!trd$variable%in%c("MCD12Q1","MOD35pp"),],asp=1,scales=list(draw=F,rot=0,relation="free"),
260
                                       at=at,col.regions=cols,maxpixels=7e6,
261
                                       ylab="Latitude",xlab="Longitude"),strip = strip.custom(par.strip.text=list(cex=.75)))+layer(sp.lines(trans,lwd=2))
262

    
263
p2=useOuterStrips(
264
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MCD12Q1"),],
265
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
266
            at=c(-1,IGBP$ID),col.regions=IGBP$col,maxpixels=7e7,
267
            legend=list(
268
              right=list(fun=draw.key(list(columns=1,#title="MCD12Q1 \n IGBP Land \n Cover",
269
                           rectangles=list(col=IGBP$col,size=1),
270
                           text=list(as.character(IGBP$ID),at=IGBP$ID-.5))))),
271
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
272
p3=useOuterStrips(
273
  levelplot(value~x*y|variable+trans,data=trd[trd$variable%in%c("MOD35pp"),],
274
            asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=F,
275
            at=c(-1:4),col.regions=c("blue","cyan","tan","darkgreen"),maxpixels=7e7,
276
            legend=list(
277
              right=list(fun=draw.key(list(columns=1,#title="MOD35 \n Processing \n Path",
278
                           rectangles=list(col=c("blue","cyan","tan","darkgreen"),size=1),
279
                           text=list(c("Water","Coast","Desert","Land")))))),
280
            ylab="",xlab=" "),strip = strip.custom(par.strip.text=list(cex=.75)),strip.left=F)+layer(sp.lines(trans,lwd=2))
281

    
282
## transects
283
p4=xyplot(value~dist|transect,groups=variable,type=c("smooth","p"),
284
       data=transd,panel=function(...,subscripts=subscripts) {
285
         td=transd[subscripts,]
286
         ## mod09
287
         imod09=td$variable=="MOD09CF"
288
         panel.xyplot(td$dist[imod09],td$value[imod09],type=c("p","smooth"),span=0.2,subscripts=1:sum(imod09),col="red",pch=16,cex=.25)
289
         ## mod35C5
290
         imod35=td$variable=="C5MOD35CF"
291
         panel.xyplot(td$dist[imod35],td$value[imod35],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35),col="blue",pch=16,cex=.25)
292
         ## mod35C6
293
         imod35c6=td$variable=="C6MOD35CF"
294
         panel.xyplot(td$dist[imod35c6],td$value[imod35c6],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod35c6),col="black",pch=16,cex=.25)
295
         ## mod17
296
         imod17=td$variable=="MOD17"
297
         panel.xyplot(td$dist[imod17],100*((td$value[imod17]-td$min[imod17][1])/(td$max[imod17][1]-td$min[imod17][1])),
298
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="darkgreen",lty=5,pch=1,cex=.25)
299
         imod17qc=td$variable=="MOD17CF"
300
         panel.xyplot(td$dist[imod17qc],td$value[imod17qc],type=c("p","smooth"),span=0.09,subscripts=1:sum(imod17qc),col="darkgreen",pch=16,cex=.25)
301
         ## mod11
302
         imod11=td$variable=="MOD11"
303
         panel.xyplot(td$dist[imod11],100*((td$value[imod11]-td$min[imod11][1])/(td$max[imod11][1]-td$min[imod11][1])),
304
                      type=c("smooth"),span=0.09,subscripts=1:sum(imod17),col="orange",lty="dashed",pch=1,cex=.25)
305
         imod11qc=td$variable=="MOD11CF"
306
         qcspan=ifelse(td$transect[1]=="Australia",0.2,0.05)
307
         panel.xyplot(td$dist[imod11qc],td$value[imod11qc],type=c("p","smooth"),npoints=100,span=qcspan,subscripts=1:sum(imod11qc),col="orange",pch=16,cex=.25)
308
         ## land
309
         path=td[td$variable=="MOD35pp",]
310
         panel.segments(path$dist,-5,c(path$dist[-1],max(path$dist,na.rm=T)),-5,col=c("blue","cyan","tan","darkgreen")[path$value+1],subscripts=1:nrow(path),lwd=15,type="l")
311
         land=td[td$variable=="MCD12Q1",]
312
         panel.segments(land$dist,-10,c(land$dist[-1],max(land$dist,na.rm=T)),-10,col=IGBP$col[land$value+1],subscripts=1:nrow(land),lwd=15,type="l")
313
        },subscripts=T,par.settings = list(grid.pars = list(lineend = "butt")),
314
       scales=list(
315
         x=list(alternating=1,relation="free"),#, lim=c(0,70)),
316
         y=list(at=c(-10,-5,seq(0,100,len=5)),
317
           labels=c("IGBP","MOD35",seq(0,100,len=5)),
318
           lim=c(-15,100))),
319
       xlab="Distance Along Transect (km)", ylab="% Missing Data / % of Maximum Value",
320
       legend=list(
321
         bottom=list(fun=draw.key(list( rep=FALSE,columns=1,title=" ",
322
                      ##                   text=list(c("MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
323
                      lines=list(type=c("b","b","b","b","b","l","b","l"),pch=16,cex=.5,lty=c(0,1,1,1,1,5,1,5),col=c("transparent","red","blue","black","darkgreen","darkgreen","orange","orange")),
324
                       text=list(c("MODIS Products","MOD09 % Cloudy","C5 MOD35 % Cloudy","C6 MOD35 % Cloudy","MOD17 % Missing","MOD17 (scaled)","MOD11 % Missing","MOD11 (scaled)")),
325
                       rectangles=list(border=NA,col=c(NA,"tan","darkgreen")),
326
                       text=list(c("C5 MOD35 Processing Path","Desert","Land")),
327
                      rectangles=list(border=NA,col=c(NA,IGBP$col[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])),
328
                      text=list(c("MCD12Q1 IGBP Land Cover",IGBP$class[sort(unique(transd$value[transd$variable=="MCD12Q1"]+1))])))))),
329
 strip = strip.custom(par.strip.text=list(cex=.75)))
330
print(p4)
331

    
332
#trdw=cast(trd,trans+x+y~variable,value="value")
333
#transdw=cast(transd,transect+dist~variable,value="value")
334
#xyplot(MOD11CF~C5MOD35CF|transect,groups=MCD12Q1,data=transdw,pch=16,cex=1,scales=list(relation="free"))
335
#xyplot(MOD17~C5MOD35CF|trans,groups=MCD12Q1,data=trdw,pch=16,cex=1,scales=list(relation="free"))
336

    
337
#p5=levelplot(value~x*y|variable,data=rondonia,asp=1,scales=list(draw=F,rot=0,relation="free"),colorkey=T)#,
338
#print(p5)
339

    
340

    
341
CairoPDF("output/mod35compare.pdf",width=11,height=7)
342
#CairoPNG("output/mod35compare_%d.png",units="in", width=11,height=8.5,pointsize=4000,dpi=1200,antialias="subpixel")
343
### Global Comparison
344
print(g1)
345
print(g1,position=c(0,.33,1,1),more=T)
346
print(g2,position=c(0,0,1,0.394),more=T)
347
print(g3,position=c(0.31,0.06,.42,0.27),more=F)
348
### MOD35 Desert Processing path
349
levelplot(pp,asp=1,scales=list(draw=T,rot=0),maxpixels=1e6,
350
          at=c(-1:3),col.regions=c("blue","cyan","tan","darkgreen"),margin=F,
351
          colorkey=list(space="bottom",title="MOD35 Processing Path",labels=list(labels=c("Water","Coast","Desert","Land"),at=0:4-.5)))+layer(sp.polygons(bbs,lwd=2))+layer(sp.lines(coast,lwd=.5))
352
### levelplot of regions
353
print(p1,position=c(0,0,.62,1),more=T)
354
print(p2,position=c(0.6,0.21,0.78,0.79),more=T)
355
print(p3,position=c(0.76,0.21,1,0.79))
356
### profile plots
357
print(p4)
358
dev.off()
359

    
360
### summary stats for paper
361
  td=cast(transect+loc+dist~variable,value="value",data=transd)
362
  td2=melt.data.frame(td,id.vars=c("transect","dist","loc","MOD35pp","MCD12Q1"))
363

    
364
## function to prettyprint mean/sd's
365
msd= function(x) paste(round(mean(x,na.rm=T),1),"% ±",round(sd(x,na.rm=T),1),sep="")
366

    
367
cast(td2,transect+variable~MOD35pp,value="value",fun=msd)
368
cast(td2,transect+variable~MOD35pp+MCD12Q1,value="value",fun=msd)
369
cast(td2,transect+variable~.,value="value",fun=msd)
370

    
371
cast(td2,transect+variable~.,value="value",fun=msd)
372

    
373
cast(td2,variable~MOD35pp,value="value",fun=msd)
374
cast(td2,variable~.,value="value",fun=msd)
375

    
376
td[td$transect=="Venezuela",]
377

    
378

    
379

    
380

    
381
## scatterplot of MOD35 vs MOD09
382
trdl=cast(trans+x+y~variable,value="value",data=trd)
383
xyplot(MOD35C5qc~MOD09qc|trans+as.factor(MOD35pp),pch=16,cex=.2,data=trdl,auto.key=T)+layer(panel.abline(0,1))
384

    
385

    
386
### LANDCOVER
387
levelplot(lulc,col.regions=IGBP$col,scales=list(cex=2),colorkey=list(space="right",at=0:17,labels=list(at=seq(0.5,16.5,by=1),labels=levels(lulc)[[1]]$class,cex=2)),margin=F)
388

    
389
levelplot(mcompare,col.regions=cols,at=at,margin=F,sub="Frequency of MOD35 Clouds in March")
390
#levelplot(dif,col.regions=bgyr(20),margin=F)
391
levelplot(mdiff,col.regions=bgyr(100),at=seq(mdiff@data@min,mdiff@data@max,len=100),margin=F)
392

    
393

    
394
boxplot(as.matrix(subset(dif,subset=1))~forest,varwidth=T,notch=T);abline(h=0)
395

    
396

    
397
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
398
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at)
399

    
400

    
401

    
402

    
403
levelplot(modprod,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
404
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
405
          xlim=c(-7300000,-6670000),ylim=c(0,600000))
406

    
407
levelplot(v5m,main="Missing Data (%) in MOD17 (NPP) and MOD43 (BRDF Reflectance)",
408
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
409
          xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
410

    
411

    
412
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
413
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
414
          margin=F)
415

    
416
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
417
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
418
          xlim=c(-7200000,-6670000),ylim=c(0,400000),margin=F)
419

    
420
levelplot(subset(v5v6compare,1:2),main="Proportion Cloudy Days (%) in Collection 5 and 6 MOD35",
421
          sub="Tile H11v08 (Venezuela)",col.regions=cols,at=at,
422
          xlim=c(-7500000,-7200000),ylim=c(700000,1000000),margin=F)
423

    
424

    
425
dev.off()
426

    
427
### smoothing plots
428
## explore smoothed version
429
td=subset(v6,m)
430
## build weight matrix
431
s=3
432
w=matrix(1/(s*s),nrow=s,ncol=s)
433
#w[s-1,s-1]=4/12; w
434
td2=focal(td,w=w)
435
td3=stack(td,td2)
436

    
437
levelplot(td3,col.regions=cols,at=at,margin=F)
438

    
439
dev.off()
440
plot(stack(difm,lulc))
441

    
442
### ROI
443
tile_ll=projectExtent(v6, "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
444

    
445
62,59
446
0,3
447

    
448

    
449

    
450
#### export KML timeseries
451
library(plotKML)
452
tile="h11v08"
453
file=paste("summary/MOD35_",tile,".nc",sep="")
454
system(paste("gdalwarp -overwrite -multi -ot INT16 -r cubicspline -srcnodata 255 -dstnodata 255 -s_srs '+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs' -t_srs 'EPSG:4326' NETCDF:",file,":PCloud  MOD35_",tile,".tif",sep=""))
455

    
456
v6sp=brick(paste("MOD35_",tile,".tif",sep=""))
457
v6sp=readAll(v6sp)
458

    
459
## wasn't working with line below, perhaps Z should just be text? not date?
460
v6sp=setZ(v6sp,as.Date(paste("2011-",1:12,"-15",sep="")))
461
names(v6sp)=month.name
462

    
463
kml_open("output/mod35.kml")
464

    
465

    
466
kml_layer.RasterBrick(v6sp,
467
     plot.legend = TRUE, dtime = "", tz = "GMT",
468
    z.lim = c(0,100),colour_scale = get("colour_scale_numeric", envir = plotKML.opts))
469
#    home_url = get("home_url", envir = plotKML.opts),
470
#    metadata = NULL, html.table = NULL,
471
#    altitudeMode = "clampToGround", balloon = FALSE,
472
)
473

    
474
logo = "http://static.tumblr.com/t0afs9f/KWTm94tpm/yale_logo.png"
475
kml_screen(image.file = logo, position = "UL", sname = "YALE logo",size=c(.1,.1))
476
kml_close("mod35.kml")
477
kml_compress("mod35.kml",files=c(paste(month.name,".png",sep=""),"obj_legend.png"),zip="/usr/bin/zip")
(19-19/34)