Project

General

Profile

« Previous | Next » 

Revision 170edade

Added by Benoit Parmentier over 12 years ago

Method comparison initial commit task #491

View differences:

climate/research/oregon/interpolation/methods_comparison.R
1
#####################################  METHOD COMPARISON ##########################################
2
#################################### CLIMATE INTERPOLATION ########################################
3
#This script utilizes the R ojbects created during the interpolation phase.                       #
4
#At this stage the stcrip produce figures of various accuracy metrics.                            #
5
#AUTHOR: Benoit Parmentier                                                                        #
6
#DATE: 08/26/2012                                                                                 #
7
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#??--                                   #
8
###################################################################################################
9

  
10
###Loading R library and packages                                                      
11
#library(gtools)                                        # loading some useful tools 
12
library(mgcv)                                           # GAM package by Wood 2006 (version 2012)
13
library(sp)                                             # Spatial pacakge with class definition by Bivand et al. 2008
14
library(spdep)                                          # Spatial package with methods and spatial stat. by Bivand et al. 2012
15
library(rgdal)                                          # GDAL wrapper for R, spatial utilities (Keitt et al. 2012)
16
library(gstat)                                          # Kriging and co-kriging by Pebesma et al. 2004
17
library(automap)                                        # Automated Kriging based on gstat module by Hiemstra et al. 2008
18
library(spgwr)
19
library(gpclib)
20
library(maptools)
21
library(graphics)
22
library(parallel)                            # Urbanek S. and Ripley B., package for multi cores & parralel processing
23
library(raster)
24
library(rasterVis)
25
library(plotrix)   #Draw circle on graph
26

  
27
## Functions
28
#loading R objects that might have similar names
29
load_obj <- function(f)
30
{
31
  env <- new.env()
32
  nm <- load(f, env)[1]
33
  env[[nm]]
34
}
35

  
36
###Parameters and arguments
37

  
38
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp"    #GHCN shapefile containing variables for modeling 2010                 
39
#infile2<-"list_10_dates_04212012.txt"                    #List of 10 dates for the regression
40
infile2<-"list_365_dates_04212012.txt"                    #list of dates
41
infile3<-"LST_dates_var_names.txt"                        #LST dates name
42
infile4<-"models_interpolation_05142012.txt"              #Interpolation model names
43
infile5<-"mean_day244_rescaled.rst"                       #mean LST for day 244
44
inlistf<-"list_files_05032012.txt"                        #list of raster images containing the Covariates
45

  
46
obj_list<-"list_obj_08262012.txt"                                  #Results of fusion from the run on ATLAS
47
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison" #Jupiter LOCATION on Atlas for kriging                              #Jupiter Location on XANDERS
48
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/"            #Local dropbox folder on Benoit's laptop
49
setwd(path) 
50
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
51
                                                                                #Number of kriging model
52
out_prefix<-"methods_08262012_"                                              #User defined output prefix
53

  
54
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="")                      #Column 1 contains the names of raster files
55
inlistvar<-lines[,1]
56
inlistvar<-paste(path,"/",as.character(inlistvar),sep="")
57

  
58
#mention this is the last... files
59

  
60
### RESULTS COMPARISON
61

  
62
# PART 1 : using R object created during the interpolation phase
63

  
64
lines<-read.table(paste(path,"/",obj_list,sep=""), sep=",")   #Column 1 contains the names RData objects
65
inlistobj<-lines[,1]
66
inlistobj<-paste(path,"/",as.character(inlistobj),sep="")
67
obj_names<-as.character(lines[,2])                    #Column two contains short names for obj. model
68

  
69
nel<-length(inlistobj)
70
method_mod <-vector("list",nel) #list of one row data.frame
71
method_tb <-vector("list",nel) #list of one row data.frame
72
method_mean<-vector("list",nel)
73

  
74
for (i in 1:length(inlistobj)){
75
  obj_tmp<-load_obj(inlistobj[i])
76
  method_mod[[i]]<-obj_tmp
77
  #names(method_mod[[i]])<-obj_names[i]
78
}
79
obj_tmp<-load_obj(inlistobj[i])
80

  
81
names(method_mod)<-obj_names
82

  
83
#Condense and add other comparison 
84

  
85
for(k in 1:length(method_mod)){            # start of the for main loop to all methods
86

  
87
tb<-method_mod[[k]][[1]][[3]][0,] #copy
88
mod_tmp<-method_mod[[k]]
89

  
90
for (i in 1:365){                     # Assuming 365 days of prediction
91
  tmp<-mod_tmp[[i]][[3]]
92
  tb<-rbind(tb,tmp)
93
}
94
rm(mod_tmp)
95

  
96
for(i in 4:(ncol(tb))){            # start of the for loop #1
97
  tb[,i]<-as.numeric(as.character(tb[,i]))  
98
}
99

  
100
method_tb[[k]]<-tb
101
tb_RMSE<-subset(tb, metric=="RMSE")
102
tb_MAE<-subset(tb,metric=="MAE")
103
tb_ME<-subset(tb,metric=="ME")
104
tb_R2<-subset(tb,metric=="R2")
105
tb_RMSE_f<-subset(tb, metric=="RMSE_f")
106
tb_MAE_f<-subset(tb,metric=="MAE_f")
107

  
108
tb_diagnostic1<-rbind(tb_RMSE,tb_MAE,tb_ME,tb_R2)
109

  
110
na_mod<-colSums(!is.na(tb_RMSE[,4:ncol(tb)]))
111
for (j in 4:ncol(tb)){
112
  
113
  if (na_mod[j-3]<183){
114
    tb_RMSE<-tb_RMSE[,-j]   #Remove columns that has too many missing values!!!
115
  }
116
}
117

  
118
na_mod<-colSums(!is.na(tb_MAE[,4:ncol(tb)]))
119
for (j in 4:ncol(tb)){
120
  
121
  if (na_mod[j-3]<183){
122
    tb_MAE<-tb_MAE[,-j]   #Remove columns that has too many missing values!!!
123
  }
124
}
125

  
126
na_mod<-colSums(!is.na(tb_MAE_f[,4:ncol(tb)])) 
127
for (j in 4:ncol(tb)){
128
  
129
  if (na_mod[j-3]<183){
130
    tb_MAE_f<-tb_MAE_f[,-j]   #Remove columns that has too many missing values!!!
131
  }
132
}
133

  
134
na_mod<-colSums(!is.na(tb_ME[,4:ncol(tb)]))
135
for (j in 4:ncol(tb)){
136
  
137
  if (na_mod[j-3]<183){
138
    tb_ME<-tb_ME[,-j]   #Remove columns that has too many missing values!!!
139
  }
140
}
141

  
142
#Add assessment of missing prediction over the year.
143

  
144
mean_RMSE<-sapply(tb_RMSE[,4:ncol(tb_RMSE)],mean,na.rm=T)
145
mean_MAE<-sapply(tb_MAE[,4:ncol(tb_MAE)],mean,na.rm=T)
146
mean_R2<-sapply(tb_R2[,4:ncol(tb_R2)],mean, n.rm=T)
147
mean_ME<-sapply(tb_ME[,4:ncol(tb_ME)],mean,na.rm=T)
148
mean_MAE_f<-sapply(tb_MAE[,4:ncol(tb_MAE_f)],mean,na.rm=T)
149
mean_RMSE_f<-sapply(tb_RMSE_f[,4:ncol(tb_RMSE_f)],mean,na.rm=T)
150
mean_list<-list(mean_RMSE,mean_MAE,mean_R2,mean_ME,mean_MAE_f,mean_RMSE_f)
151
names(mean_list)<-c("RMSE","MAE","R2","ME","MAE_f","RMSE_f")
152
method_mean[[k]]<-mean_list
153
names_methods<-obj_names
154

  
155
# Now create plots
156

  
157
png(paste("RMSE_for_",names_methods[k],out_prefix,".png", sep=""))
158
boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],
159
        ylab= "RMSE", outline=FALSE) #ADD TITLE RELATED TO METHODS...
160
dev.off()
161

  
162
#boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],outline=FALSE) #ADD TITLE RELATED TO METHODS...
163
png(paste("MAE_for_",names_methods[k],out_prefix,".png", sep=""))
164
boxplot(tb_MAE[,4:ncol(tb_MAE)],main=names_methods[k],
165
        ylab= "MAE", outline=FALSE) #ADD TITLE RELATED TO METHODS...
166
dev.off()
167

  
168
#boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],outline=FALSE) #ADD TITLE RELATED TO METHODS...
169
png(paste("ME_for_",names_methods[k],out_prefix,".png", sep=""))
170
boxplot(tb_ME[,4:ncol(tb_MAE)],main=names_methods[k],
171
        ylab= "ME", outline=FALSE) #ADD TITLE RELATED TO METHODS...
172
dev.off()
173

  
174
}
175

  
176
names(method_mean)<-obj_names
177
#Add summary mean graphs!! HERE
178

  
179
write.table(as.data.frame(method_mean$gam_fus_mod1$MAE), "methods_mean_gam_MAE_test1.txt", sep=",")
180
write.table(as.data.frame(method_mean$fus_CAI$MAE), "methods_mean_fus_CAI_MAE_test1.txt", sep=",")
181

  
182
#### END OF THE SCRIPT

Also available in: Unified diff