Revision 170edade
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/methods_comparison.R | ||
---|---|---|
1 |
##################################### METHOD COMPARISON ########################################## |
|
2 |
#################################### CLIMATE INTERPOLATION ######################################## |
|
3 |
#This script utilizes the R ojbects created during the interpolation phase. # |
|
4 |
#At this stage the stcrip produce figures of various accuracy metrics. # |
|
5 |
#AUTHOR: Benoit Parmentier # |
|
6 |
#DATE: 08/26/2012 # |
|
7 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#??-- # |
|
8 |
################################################################################################### |
|
9 |
|
|
10 |
###Loading R library and packages |
|
11 |
#library(gtools) # loading some useful tools |
|
12 |
library(mgcv) # GAM package by Wood 2006 (version 2012) |
|
13 |
library(sp) # Spatial pacakge with class definition by Bivand et al. 2008 |
|
14 |
library(spdep) # Spatial package with methods and spatial stat. by Bivand et al. 2012 |
|
15 |
library(rgdal) # GDAL wrapper for R, spatial utilities (Keitt et al. 2012) |
|
16 |
library(gstat) # Kriging and co-kriging by Pebesma et al. 2004 |
|
17 |
library(automap) # Automated Kriging based on gstat module by Hiemstra et al. 2008 |
|
18 |
library(spgwr) |
|
19 |
library(gpclib) |
|
20 |
library(maptools) |
|
21 |
library(graphics) |
|
22 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
|
23 |
library(raster) |
|
24 |
library(rasterVis) |
|
25 |
library(plotrix) #Draw circle on graph |
|
26 |
|
|
27 |
## Functions |
|
28 |
#loading R objects that might have similar names |
|
29 |
load_obj <- function(f) |
|
30 |
{ |
|
31 |
env <- new.env() |
|
32 |
nm <- load(f, env)[1] |
|
33 |
env[[nm]] |
|
34 |
} |
|
35 |
|
|
36 |
###Parameters and arguments |
|
37 |
|
|
38 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
39 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
40 |
infile2<-"list_365_dates_04212012.txt" #list of dates |
|
41 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
|
42 |
infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
43 |
infile5<-"mean_day244_rescaled.rst" #mean LST for day 244 |
|
44 |
inlistf<-"list_files_05032012.txt" #list of raster images containing the Covariates |
|
45 |
|
|
46 |
obj_list<-"list_obj_08262012.txt" #Results of fusion from the run on ATLAS |
|
47 |
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison" #Jupiter LOCATION on Atlas for kriging #Jupiter Location on XANDERS |
|
48 |
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/" #Local dropbox folder on Benoit's laptop |
|
49 |
setwd(path) |
|
50 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
51 |
#Number of kriging model |
|
52 |
out_prefix<-"methods_08262012_" #User defined output prefix |
|
53 |
|
|
54 |
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="") #Column 1 contains the names of raster files |
|
55 |
inlistvar<-lines[,1] |
|
56 |
inlistvar<-paste(path,"/",as.character(inlistvar),sep="") |
|
57 |
|
|
58 |
#mention this is the last... files |
|
59 |
|
|
60 |
### RESULTS COMPARISON |
|
61 |
|
|
62 |
# PART 1 : using R object created during the interpolation phase |
|
63 |
|
|
64 |
lines<-read.table(paste(path,"/",obj_list,sep=""), sep=",") #Column 1 contains the names RData objects |
|
65 |
inlistobj<-lines[,1] |
|
66 |
inlistobj<-paste(path,"/",as.character(inlistobj),sep="") |
|
67 |
obj_names<-as.character(lines[,2]) #Column two contains short names for obj. model |
|
68 |
|
|
69 |
nel<-length(inlistobj) |
|
70 |
method_mod <-vector("list",nel) #list of one row data.frame |
|
71 |
method_tb <-vector("list",nel) #list of one row data.frame |
|
72 |
method_mean<-vector("list",nel) |
|
73 |
|
|
74 |
for (i in 1:length(inlistobj)){ |
|
75 |
obj_tmp<-load_obj(inlistobj[i]) |
|
76 |
method_mod[[i]]<-obj_tmp |
|
77 |
#names(method_mod[[i]])<-obj_names[i] |
|
78 |
} |
|
79 |
obj_tmp<-load_obj(inlistobj[i]) |
|
80 |
|
|
81 |
names(method_mod)<-obj_names |
|
82 |
|
|
83 |
#Condense and add other comparison |
|
84 |
|
|
85 |
for(k in 1:length(method_mod)){ # start of the for main loop to all methods |
|
86 |
|
|
87 |
tb<-method_mod[[k]][[1]][[3]][0,] #copy |
|
88 |
mod_tmp<-method_mod[[k]] |
|
89 |
|
|
90 |
for (i in 1:365){ # Assuming 365 days of prediction |
|
91 |
tmp<-mod_tmp[[i]][[3]] |
|
92 |
tb<-rbind(tb,tmp) |
|
93 |
} |
|
94 |
rm(mod_tmp) |
|
95 |
|
|
96 |
for(i in 4:(ncol(tb))){ # start of the for loop #1 |
|
97 |
tb[,i]<-as.numeric(as.character(tb[,i])) |
|
98 |
} |
|
99 |
|
|
100 |
method_tb[[k]]<-tb |
|
101 |
tb_RMSE<-subset(tb, metric=="RMSE") |
|
102 |
tb_MAE<-subset(tb,metric=="MAE") |
|
103 |
tb_ME<-subset(tb,metric=="ME") |
|
104 |
tb_R2<-subset(tb,metric=="R2") |
|
105 |
tb_RMSE_f<-subset(tb, metric=="RMSE_f") |
|
106 |
tb_MAE_f<-subset(tb,metric=="MAE_f") |
|
107 |
|
|
108 |
tb_diagnostic1<-rbind(tb_RMSE,tb_MAE,tb_ME,tb_R2) |
|
109 |
|
|
110 |
na_mod<-colSums(!is.na(tb_RMSE[,4:ncol(tb)])) |
|
111 |
for (j in 4:ncol(tb)){ |
|
112 |
|
|
113 |
if (na_mod[j-3]<183){ |
|
114 |
tb_RMSE<-tb_RMSE[,-j] #Remove columns that has too many missing values!!! |
|
115 |
} |
|
116 |
} |
|
117 |
|
|
118 |
na_mod<-colSums(!is.na(tb_MAE[,4:ncol(tb)])) |
|
119 |
for (j in 4:ncol(tb)){ |
|
120 |
|
|
121 |
if (na_mod[j-3]<183){ |
|
122 |
tb_MAE<-tb_MAE[,-j] #Remove columns that has too many missing values!!! |
|
123 |
} |
|
124 |
} |
|
125 |
|
|
126 |
na_mod<-colSums(!is.na(tb_MAE_f[,4:ncol(tb)])) |
|
127 |
for (j in 4:ncol(tb)){ |
|
128 |
|
|
129 |
if (na_mod[j-3]<183){ |
|
130 |
tb_MAE_f<-tb_MAE_f[,-j] #Remove columns that has too many missing values!!! |
|
131 |
} |
|
132 |
} |
|
133 |
|
|
134 |
na_mod<-colSums(!is.na(tb_ME[,4:ncol(tb)])) |
|
135 |
for (j in 4:ncol(tb)){ |
|
136 |
|
|
137 |
if (na_mod[j-3]<183){ |
|
138 |
tb_ME<-tb_ME[,-j] #Remove columns that has too many missing values!!! |
|
139 |
} |
|
140 |
} |
|
141 |
|
|
142 |
#Add assessment of missing prediction over the year. |
|
143 |
|
|
144 |
mean_RMSE<-sapply(tb_RMSE[,4:ncol(tb_RMSE)],mean,na.rm=T) |
|
145 |
mean_MAE<-sapply(tb_MAE[,4:ncol(tb_MAE)],mean,na.rm=T) |
|
146 |
mean_R2<-sapply(tb_R2[,4:ncol(tb_R2)],mean, n.rm=T) |
|
147 |
mean_ME<-sapply(tb_ME[,4:ncol(tb_ME)],mean,na.rm=T) |
|
148 |
mean_MAE_f<-sapply(tb_MAE[,4:ncol(tb_MAE_f)],mean,na.rm=T) |
|
149 |
mean_RMSE_f<-sapply(tb_RMSE_f[,4:ncol(tb_RMSE_f)],mean,na.rm=T) |
|
150 |
mean_list<-list(mean_RMSE,mean_MAE,mean_R2,mean_ME,mean_MAE_f,mean_RMSE_f) |
|
151 |
names(mean_list)<-c("RMSE","MAE","R2","ME","MAE_f","RMSE_f") |
|
152 |
method_mean[[k]]<-mean_list |
|
153 |
names_methods<-obj_names |
|
154 |
|
|
155 |
# Now create plots |
|
156 |
|
|
157 |
png(paste("RMSE_for_",names_methods[k],out_prefix,".png", sep="")) |
|
158 |
boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k], |
|
159 |
ylab= "RMSE", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
160 |
dev.off() |
|
161 |
|
|
162 |
#boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
163 |
png(paste("MAE_for_",names_methods[k],out_prefix,".png", sep="")) |
|
164 |
boxplot(tb_MAE[,4:ncol(tb_MAE)],main=names_methods[k], |
|
165 |
ylab= "MAE", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
166 |
dev.off() |
|
167 |
|
|
168 |
#boxplot(tb_RMSE[,4:ncol(tb_RMSE)],main=names_methods[k],outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
169 |
png(paste("ME_for_",names_methods[k],out_prefix,".png", sep="")) |
|
170 |
boxplot(tb_ME[,4:ncol(tb_MAE)],main=names_methods[k], |
|
171 |
ylab= "ME", outline=FALSE) #ADD TITLE RELATED TO METHODS... |
|
172 |
dev.off() |
|
173 |
|
|
174 |
} |
|
175 |
|
|
176 |
names(method_mean)<-obj_names |
|
177 |
#Add summary mean graphs!! HERE |
|
178 |
|
|
179 |
write.table(as.data.frame(method_mean$gam_fus_mod1$MAE), "methods_mean_gam_MAE_test1.txt", sep=",") |
|
180 |
write.table(as.data.frame(method_mean$fus_CAI$MAE), "methods_mean_fus_CAI_MAE_test1.txt", sep=",") |
|
181 |
|
|
182 |
#### END OF THE SCRIPT |
Also available in: Unified diff
Method comparison initial commit task #491