Revision 17673d6a
Added by Benoit Parmentier over 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
1 |
############################## INTERPOLATION OF TEMPERATURES ####################################### |
|
1 |
############################## INTERPOLATION OF TEMPERATURES #######################################
|
|
2 | 2 |
####################### Script for assessment of scaling up on NEX : part2 ############################## |
3 | 3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
4 | 4 |
#Accuracy methods are added in the the function scripts to evaluate results. |
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 05/13/2015
|
|
8 |
#MODIFIED ON: 05/26/2015
|
|
9 | 9 |
#Version: 4 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap |
... | ... | |
381 | 381 |
interpolation_method <- c("gam_CAI") #PARAM2 |
382 | 382 |
#out_suffix<-"run10_global_analyses_01282015" |
383 | 383 |
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015" |
384 |
out_suffix <- "run10_1500x4500_global_analyses_pred_2003_05122015" #PARAM3
|
|
385 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_2003_05122015" #PARAM4
|
|
384 |
out_suffix <- "run10_1500x4500_global_analyses_pred_2010_05262015" #PARAM3
|
|
385 |
out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_2010_05262015" #PARAM4
|
|
386 | 386 |
create_out_dir_param <- FALSE #PARAM 5 |
387 | 387 |
|
388 | 388 |
mosaic_plot <- FALSE #PARAM6 |
389 | 389 |
|
390 | 390 |
#if daily mosaics NULL then mosaicas all days of the year |
391 | 391 |
|
392 |
day_to_mosaic <- c("20030101","20030102","20030103","20030104","20030105", |
|
393 |
"20030301","20030302","20030303","20030304","20030305", |
|
394 |
"20030501","20030502","20030503","20030504","20030505", |
|
395 |
"20030701","20030702","20030703","20030704","20030705", |
|
396 |
"20030901","20030902","20030903","20030904","20030905", |
|
397 |
"20031101","20031102","20031103","20031104","20031105") #PARAM7 |
|
392 |
day_to_mosaic <- c("20100829","20100830","20100831", |
|
393 |
"20100901","20100902","20100903") |
|
398 | 394 |
|
399 |
|
|
400 |
#CRS_locs_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
401 | 395 |
CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
402 | 396 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
403 | 397 |
|
... | ... | |
471 | 465 |
|
472 | 466 |
summary_metrics_v_all <- summary_metrics_v |
473 | 467 |
#deal with additional tiles... |
474 |
if(reg_modified==T){ |
|
475 |
|
|
476 |
summary_metrics_v_tmp <- summary_metrics_v |
|
477 |
#summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1b"] <- "reg1" |
|
478 |
#summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1c"] <- "reg1" |
|
479 |
#summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_3b"] <- "reg3" |
|
480 |
summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg5b"] <- "reg5" |
|
481 |
|
|
482 |
summary_metrics_v_tmp$reg_all <- summary_metrics_v$reg |
|
483 |
### |
|
484 |
summary_metrics_v<- summary_metrics_v_tmp |
|
485 |
|
|
486 |
### |
|
487 |
tb_tmp <- tb |
|
488 |
#tb_tmp$reg[tb_tmp$reg=="reg_1b"] <- "reg1" |
|
489 |
#tb_tmp$reg[tb_tmp$reg=="reg_1c"] <- "reg1" |
|
490 |
#tb_tmp$reg[tb_tmp$reg=="reg_3b"] <- "reg3" |
|
491 |
tb_tmp$reg[tb_tmp$reg=="reg5b"] <- "reg5" |
|
492 |
|
|
493 |
### |
|
494 |
tb <- tb_tmp |
|
495 |
} |
|
468 |
# if(reg_modified==T){
|
|
469 |
# |
|
470 |
# summary_metrics_v_tmp <- summary_metrics_v
|
|
471 |
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1b"] <- "reg1"
|
|
472 |
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_1c"] <- "reg1"
|
|
473 |
# #summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg_3b"] <- "reg3"
|
|
474 |
# summary_metrics_v_tmp$reg[summary_metrics_v_tmp$reg=="reg5b"] <- "reg5"
|
|
475 |
# |
|
476 |
# summary_metrics_v_tmp$reg_all <- summary_metrics_v$reg
|
|
477 |
# ###
|
|
478 |
# summary_metrics_v<- summary_metrics_v_tmp
|
|
479 |
# |
|
480 |
# ###
|
|
481 |
# tb_tmp <- tb
|
|
482 |
# #tb_tmp$reg[tb_tmp$reg=="reg_1b"] <- "reg1"
|
|
483 |
# #tb_tmp$reg[tb_tmp$reg=="reg_1c"] <- "reg1"
|
|
484 |
# #tb_tmp$reg[tb_tmp$reg=="reg_3b"] <- "reg3"
|
|
485 |
# tb_tmp$reg[tb_tmp$reg=="reg5b"] <- "reg5"
|
|
486 |
# |
|
487 |
# ###
|
|
488 |
# tb <- tb_tmp
|
|
489 |
# }
|
|
496 | 490 |
|
497 | 491 |
table(summary_metrics_v_all$reg) |
498 | 492 |
table(summary_metrics_v$reg) |
... | ... | |
823 | 817 |
} |
824 | 818 |
|
825 | 819 |
## Number of tiles with information: |
826 |
sum(df_tile_processed$metrics_v) #20,number of tiles with raster object
|
|
827 |
length(df_tile_processed$metrics_v) #25,number of tiles in the region
|
|
820 |
sum(df_tile_processed$metrics_v) #26,number of tiles with raster object
|
|
821 |
length(df_tile_processed$metrics_v) #26,number of tiles in the region
|
|
828 | 822 |
sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info |
829 | 823 |
|
830 | 824 |
#coordinates |
... | ... | |
1071 | 1065 |
# pattern=paste("^world_mosaics.*.tif$",sep=""),full.names=T) |
1072 | 1066 |
|
1073 | 1067 |
lf_world_pred <-list.files(path=file.path(out_dir,"mosaics"), |
1074 |
pattern=paste("^reg5.*.",out_suffix,".tif$",sep=""),full.names=T)
|
|
1068 |
pattern=paste("^reg4.*.",".tif$",sep=""),full.names=T)
|
|
1075 | 1069 |
|
1076 | 1070 |
#mosaic_list_mean <- test_list |
1077 | 1071 |
#out_rastnames <- "world_test_mosaic_20100101" |
... | ... | |
1092 | 1086 |
#world_m_list <- mclapply(11:30, list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
1093 | 1087 |
world_m_list <- mclapply(1:length(l_dates), list_param=list_param_plot_screen_raster, plot_screen_raster_val,mc.preschedule=FALSE,mc.cores = num_cores) #This is the end bracket from mclapply(...) statement |
1094 | 1088 |
|
1089 |
s_pred <- stack(lf_raster_fname) |
|
1090 |
|
|
1091 |
res_pix <- 1500 |
|
1092 |
col_mfrow <- 3 |
|
1093 |
row_mfrow <- 2 |
|
1094 |
|
|
1095 |
png(filename=paste("Figure10_levelplot_combined_",region_name,"_",out_suffix,".png",sep=""), |
|
1096 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
1097 |
|
|
1098 |
levelplot(s_pred,layers=1:6,col.regions=rev(terrain.colors(255)),cex=4) |
|
1099 |
|
|
1100 |
dev.off() |
|
1101 |
|
|
1102 |
# blues<- designer.colors(6, c( "blue", "white") ) |
|
1103 |
# reds <- designer.colors(6, c( "white","red") ) |
|
1104 |
# colorTable<- c( blues[-6], reds) |
|
1105 |
# breaks with a gap of 10 to 17 assigned the white color |
|
1106 |
# brks<- c(seq( 1, 10,,6), seq( 17, 25,,6)) |
|
1107 |
# image.plot( x,y,z,breaks=brks, col=colorTable) |
|
1108 |
# |
|
1109 |
|
|
1095 | 1110 |
#lf_world_mask_reg <- vector("list",length=length(lf_world_pred)) |
1096 | 1111 |
#for(i in 1:length(lf_world_pred)){ |
1097 | 1112 |
# |
Also available in: Unified diff
scaling up assessment part2, South America with additional tiles, figures and analyses