Project

General

Profile

« Previous | Next » 

Revision 17686cb3

Added by Benoit Parmentier over 11 years ago

gam day with additional screening of training data for model comparison paper OR

View differences:

climate/research/oregon/interpolation/master_script_temp.R
10 10
#STAGE 5: Output analyses: assessment of results for specific dates...
11 11
#
12 12
#AUTHOR: Benoit Parmentier                                                                       
13
#DATE: 07/04/2013                                                                                 
13
#DATE: 07/05/2013                                                                                 
14 14

  
15 15
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568--   
16 16

  
......
54 54
clim_script <- file.path(script_path,"climatology_05312013.py") # LST climatology python script
55 55
grass_setting_script <- file.path(script_path,"grass-setup.R") #Set up system shell environment for python+GRASS
56 56
#source(file.path(script_path,"download_and_produce_MODIS_LST_climatology_06112013.R"))
57
source(file.path(script_path,"covariates_production_temperatures_07022013.R"))
57
source(file.path(script_path,"covariates_production_temperatures_07052013.R"))
58 58
source(file.path(script_path,"Database_stations_covariates_processing_function_06112013.R"))
59
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_06112013.R"))
59
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_07052013.R"))
60 60
source(file.path(script_path,"results_interpolation_date_output_analyses_06112013.R"))
61 61
#source(file.path(script_path,"results_covariates_database_stations_output_analyses_04012013.R")) #to be completed
62 62

  
......
64 64

  
65 65
source(file.path(script_path,"sampling_script_functions_03122013.R"))
66 66
source(file.path(script_path,"GAM_fusion_function_multisampling_07022013.R")) #Include GAM_CAI
67
source(file.path(script_path,"interpolation_method_day_function_multisampling_06082013.R")) #Include GAM_day
67
source(file.path(script_path,"interpolation_method_day_function_multisampling_07052013.R")) #Include GAM_day
68 68
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_05062013.R"))
69 69

  
70 70
#stages_to_run<-c(1,2,3,4,5) #May decide on antoher strategy later on...
71 71
stages_to_run<-c(0,2,3,4,5) #May decide on antoher strategy later on...
72 72

  
73 73
var<-"TMAX" # variable being interpolated
74
out_prefix<-"_365d_gam_day_lst_comb2_07042013"                #User defined output prefix
75
out_suffix<-"_OR_07042013"
74
out_prefix<-"_365d_gam_day_lst_comb2_07052013"                #User defined output prefix
75
out_suffix<-"_OR_07052013"
76 76
out_suffix_modis <-"_05302013" #use tiles produce previously
77 77

  
78 78
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later
......
234 234
prop_minmax<-c(0.3,0.3)  #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
235 235
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd
236 236
dates_selected<-"" # if empty string then predict for the full year specified earlier
237
screen_data_training<-TRUE
237 238

  
238 239
#Models to run...this can be change for each run
239 240

  
......
272 273
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12")  
273 274

  
274 275
#Collect all parameters in a list
275
list_param_raster_prediction<-list(list_param_data_prep,
276
list_param_raster_prediction<-list(list_param_data_prep,screen_data_training,
276 277
                                seed_number,nb_sample,step,constant,prop_minmax,dates_selected,
277 278
                                list_models,lst_avg,out_path,script_path,
278 279
                                interpolation_method)
279
names(list_param_raster_prediction)<-c("list_param_data_prep",
280
names(list_param_raster_prediction)<-c("list_param_data_prep","screen_data_training",
280 281
                                "seed_number","nb_sample","step","constant","prop_minmax","dates_selected",
281 282
                                "list_models","lst_avg","out_path","script_path",
282 283
                                "interpolation_method")

Also available in: Unified diff