Revision 1c2cbc4d
Added by Benoit Parmentier about 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part0.R | ||
---|---|---|
1 |
#################################### INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
####################### Assessment of product part 1: mosaic and accuracy ############################## |
|
3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
|
4 |
#This part 2 of the assessment focuses on graphics to explore the spatial patterns of raster times series as figures and movie |
|
5 |
#AUTHOR: Benoit Parmentier |
|
6 |
#CREATED ON: 10/03/2016 |
|
7 |
#MODIFIED ON: 10/24/2016 |
|
8 |
#Version: 1 |
|
9 |
#PROJECT: Environmental Layers project |
|
10 |
#COMMENTS: Initial commit, script based on part NASA biodiversity conferenc |
|
11 |
#TODO: |
|
12 |
#1) Add plot broken down by year and region |
|
13 |
#2) Modify code for overall assessment accross all regions and year |
|
14 |
#3) Clean up |
|
15 |
|
|
16 |
#First source these files: |
|
17 |
#Resolved call issues from R. |
|
18 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
|
19 |
# |
|
20 |
#setfacl -Rm u:aguzman4:rwx /nobackupp6/aguzman4/climateLayers/LST_tempSpline/ |
|
21 |
#COMMIT: generating animation for region 4 for multiple years sequences |
|
22 |
|
|
23 |
################################################################################################# |
|
24 |
|
|
25 |
|
|
26 |
### Loading R library and packages |
|
27 |
#library used in the workflow production: |
|
28 |
library(gtools) # loading some useful tools |
|
29 |
library(mgcv) # GAM package by Simon Wood |
|
30 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
31 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
32 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
33 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
34 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
35 |
library(raster) # Hijmans et al. package for raster processing |
|
36 |
library(gdata) # various tools with xls reading, cbindX |
|
37 |
library(rasterVis) # Raster plotting functions |
|
38 |
library(parallel) # Parallelization of processes with multiple cores |
|
39 |
library(maptools) # Tools and functions for sp and other spatial objects e.g. spCbind |
|
40 |
library(maps) # Tools and data for spatial/geographic objects |
|
41 |
library(reshape) # Change shape of object, summarize results |
|
42 |
library(plotrix) # Additional plotting functions |
|
43 |
library(plyr) # Various tools including rbind.fill |
|
44 |
library(spgwr) # GWR method |
|
45 |
library(automap) # Kriging automatic fitting of variogram using gstat |
|
46 |
library(rgeos) # Geometric, topologic library of functions |
|
47 |
#RPostgreSQL # Interface R and Postgres, not used in this script |
|
48 |
library(gridExtra) |
|
49 |
#Additional libraries not used in workflow |
|
50 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
|
51 |
library(colorRamps) |
|
52 |
library(zoo) |
|
53 |
library(xts) |
|
54 |
library(lubridate) |
|
55 |
library(mosaic) |
|
56 |
|
|
57 |
###### Function used in the script ####### |
|
58 |
|
|
59 |
#script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
60 |
script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" #path to script |
|
61 |
|
|
62 |
## NASA poster and paper related |
|
63 |
#source(file.path(script_path,"NASA2016_conference_temperature_predictions_function_05032016b.R")) |
|
64 |
|
|
65 |
#Mosaic related on NEX |
|
66 |
#script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" |
|
67 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_09282016.R" #Functions used to mosaic predicted tiles |
|
68 |
function_mosaicing <-"global_run_scalingup_mosaicing_09282016.R" #main scripts for mosaicing predicted tiles |
|
69 |
|
|
70 |
source(file.path(script_path,function_mosaicing)) #source all functions used in this script |
|
71 |
source(file.path(script_path,function_mosaicing_functions)) #source all functions used in this script |
|
72 |
|
|
73 |
#Assessment on NEX |
|
74 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_12282015.R" #PARAM12 |
|
75 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
76 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_02092016.R" |
|
77 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
78 |
function_assessment_part3 <- "global_run_scalingup_assessment_part3_07292016.R" |
|
79 |
|
|
80 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
81 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
82 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
83 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
84 |
source(file.path(script_path,function_assessment_part3)) #source all functions used in this script |
|
85 |
|
|
86 |
#Product assessment |
|
87 |
function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09192016b.R" |
|
88 |
source(file.path(script_path,function_product_assessment_part1_functions)) #source all functions used in this script |
|
89 |
function_product_assessment_part2_functions <- "global_product_assessment_part2_functions_10222016.R" |
|
90 |
source(file.path(script_path,function_product_assessment_part2_functions)) #source all functions used in this script |
|
91 |
|
|
92 |
############################### |
|
93 |
####### Parameters, constants and arguments ### |
|
94 |
|
|
95 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #constant 1 |
|
96 |
|
|
97 |
var<-"TMAX" # variable being interpolated #param 1, arg 1 |
|
98 |
|
|
99 |
##Add for precip later... |
|
100 |
if (var == "TMAX") { |
|
101 |
y_var_name <- "dailyTmax" |
|
102 |
y_var_month <- "TMax" |
|
103 |
} |
|
104 |
if (var == "TMIN") { |
|
105 |
y_var_name <- "dailyTmin" |
|
106 |
y_var_month <- "TMin" |
|
107 |
} |
|
108 |
|
|
109 |
##Add for precip later... |
|
110 |
if (var == "TMAX") { |
|
111 |
variable_name <- "maximum temperature" |
|
112 |
} |
|
113 |
if (var == "TMIN") { |
|
114 |
variable_name <- "minimum temperature" |
|
115 |
} |
|
116 |
|
|
117 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
118 |
interpolation_method<-c("gam_CAI") #param 2 |
|
119 |
CRS_interp <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" #param 3 |
|
120 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
121 |
|
|
122 |
#out_region_name<-"" |
|
123 |
#list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") #param 4 |
|
124 |
metric_name <- "var_pred" #use RMSE if accuracy |
|
125 |
|
|
126 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
127 |
#master directory containing the definition of tile size and tiles predicted |
|
128 |
#in_dir <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg5/assessment" |
|
129 |
#in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg5/mosaic/mosaic" |
|
130 |
in_dir <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg6/assessment" |
|
131 |
in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg6/mosaics/mosaic" #predicted mosaic |
|
132 |
#in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg1/mosaics/mosaic" |
|
133 |
#in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg5/mosaics/mosaic" |
|
134 |
#in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/mosaic" #note dropped the s in mosaics |
|
135 |
|
|
136 |
region_name <- c("reg6") #param 6, arg 3 |
|
137 |
out_suffix <- "global_assessment_reg6_10232016" |
|
138 |
|
|
139 |
create_out_dir_param <- TRUE #param 9, arg 6 |
|
140 |
|
|
141 |
|
|
142 |
out_dir <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg6/assessment" |
|
143 |
|
|
144 |
#run_figure_by_year <- TRUE # param 10, arg 7 |
|
145 |
|
|
146 |
file_format <- ".tif" #format for mosaiced files # param 11 |
|
147 |
NA_flag_val <- -32768 #No data value, # param 12 |
|
148 |
|
|
149 |
#num_cores <- 6 #number of cores used # param 13, arg 8 |
|
150 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... # param 14 |
|
151 |
num_cores <- 11 #number of cores used # param 13, arg 8 |
|
152 |
#python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" #PARAM 30 |
|
153 |
python_bin <- "/usr/bin" #PARAM 30 |
|
154 |
|
|
155 |
day_start <- "1984101" #PARAM 12 arg 12 |
|
156 |
day_end <- "20141231" #PARAM 13 arg 13 |
|
157 |
#date_start <- day_start |
|
158 |
#date_end <- day_end |
|
159 |
|
|
160 |
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg4.tif" |
|
161 |
#infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_LST_reg5.tif" |
|
162 |
#infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_LST_reg4.tif" |
|
163 |
#infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_LST_reg6.tif" |
|
164 |
|
|
165 |
#run_figure_by_year <- TRUE # param 10, arg 7 |
|
166 |
#list_year_predicted <- "1984,2014" |
|
167 |
scaling <- 0.01 #was scaled on 100 |
|
168 |
#if scaling is null then perform no scaling!! |
|
169 |
|
|
170 |
#df_centroids_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg5/mosaic/output_reg5_1999/df_centroids_19990701_reg5_1999.txt" |
|
171 |
#df_centroids_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/output_reg4_1999/df_centroids_19990701_reg4_1999.txt" |
|
172 |
#df_centroids_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg6/mosaic/output_reg6_1984/df_centroids_19840101_reg6_1984.txt" |
|
173 |
#/nobackupp6/aguzman4/climateLayers/out/reg1/assessment//output_reg1_1984/df_assessment_files_reg1_1984_reg1_1984.txt |
|
174 |
|
|
175 |
#dates to plot and analyze |
|
176 |
|
|
177 |
#l_dates <- c("19990101","19990102","19990103","19990701","19990702","19990703") |
|
178 |
#l_dates <- c("19990101","19990102","19990103","19990104","19990105") |
|
179 |
#df_points_extracted_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg5/mosaic/int_mosaics/data_points_extracted.txt" |
|
180 |
#df_points_extracted_fname <- NULL #if null extract on the fly |
|
181 |
#r_mosaic_fname <- "r_mosaic.RData" |
|
182 |
#r_mosaic_fname <- NULL #if null create a stack from input dir |
|
183 |
|
|
184 |
#NA_flag_val_mosaic <- -3399999901438340239948148078125514752.000 |
|
185 |
NA_flag_val_mosaic <- -32768 |
|
186 |
in_dir_list_filename <- NULL #if NULL, use the in_dir directory to search for info |
|
187 |
countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
188 |
lf_raster <- NULL #list of raster to consider |
|
189 |
item_no <- 13 |
|
190 |
|
|
191 |
##################### START SCRIPT ################# |
|
192 |
|
|
193 |
####### PART 1: Read in data ######## |
|
194 |
out_dir <- in_dir |
|
195 |
if (create_out_dir_param == TRUE) { |
|
196 |
out_dir <- create_dir_fun(out_dir,out_suffix) |
|
197 |
setwd(out_dir) |
|
198 |
}else{ |
|
199 |
setwd(out_dir) #use previoulsy defined directory |
|
200 |
} |
|
201 |
|
|
202 |
#setwd(out_dir) |
|
203 |
|
|
204 |
########### #################### |
|
205 |
|
|
206 |
############ Using predicting first ########## |
|
207 |
|
|
208 |
## using predictions |
|
209 |
#pattern_str <- ".*.tif" |
|
210 |
pattern_str <-"*.tif" |
|
211 |
lf_raster <- list.files(path=in_dir_mosaic,pattern=pattern_str,recursive=F,full.names=T) |
|
212 |
r_stack <- stack(lf_raster,quick=T) #this is very fast now with the quick option! |
|
213 |
#save(r_mosaic,file="r_mosaic.RData") |
|
214 |
|
|
215 |
#### check for missing dates from list of tif |
|
216 |
|
|
217 |
###This should be a function!! |
|
218 |
|
|
219 |
##### This could be moved in a separate file!! |
|
220 |
############### PART4: Checking for mosaic produced for given region ############## |
|
221 |
## From list of mosaic files predicted extract dates |
|
222 |
## Check dates predicted against date range for a given date range |
|
223 |
## Join file information to centroids of tiles data.frame |
|
224 |
#list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,x=lf_mosaic_list,item_no=13,mc.preschedule=FALSE,mc.cores = num_cores)) |
|
225 |
#list_dates_produced <- mclapply(1:2,FUN=extract_date,x=lf_mosaic_list,item_no=13,mc.preschedule=FALSE,mc.cores = 2) |
|
226 |
item_no <- 13 |
|
227 |
date_start <- day_start |
|
228 |
date_end <- day_end |
|
229 |
#day_start <- "1984101" #PARAM 12 arg 12 |
|
230 |
#day_end <- "20141231" #PARAM 13 arg 13 |
|
231 |
|
|
232 |
#Using default values for parameters exectpt for num_cores=11 instead of 1 |
|
233 |
#debug(check_missing) |
|
234 |
#test_missing <- check_missing(lf=lf_raster, |
|
235 |
# pattern_str=NULL, |
|
236 |
# in_dir=".", #this is not used if lf is given |
|
237 |
# date_start="1984101", |
|
238 |
# date_end="20141231", |
|
239 |
# item_no=13, |
|
240 |
# out_suffix="", |
|
241 |
# num_cores=num_cores, |
|
242 |
# out_dir=".") |
|
243 |
|
|
244 |
##Run this on reg4 and reg5 after |
|
245 |
#Add report by year in text file? |
|
246 |
#Using specified values for parameters |
|
247 |
test_missing <- check_missing(lf=lf_raster, |
|
248 |
pattern_str=NULL, |
|
249 |
in_dir=in_dir_mosaic, |
|
250 |
date_start="1984101", |
|
251 |
date_end="20141231", |
|
252 |
item_no=13, |
|
253 |
out_suffix=out_suffix, |
|
254 |
num_cores=num_cores, |
|
255 |
out_dir=".") |
|
256 |
|
|
257 |
df_time_series <- test_missing$df_time_series |
|
258 |
head(df_time_series) |
|
259 |
|
|
260 |
table(df_time_series$missing) |
|
261 |
table(df_time_series$year) |
|
262 |
|
|
263 |
############################# |
|
264 |
##### Creating animation based on prediction |
|
265 |
|
|
266 |
##### |
|
267 |
NAvalue(r_stack) |
|
268 |
plot(r_stack,y=6,zlim=c(-10000,10000)) #this is not rescaled |
|
269 |
#plot(r_stack,zlim=c(-50,50),col=matlab.like(255)) |
|
270 |
var_name <- "dailyTmax" |
|
271 |
|
|
272 |
#debug(plot_and_animate_raster_time_series) |
|
273 |
|
|
274 |
#metric_name <- "var_pred" #use RMSE if accuracy |
|
275 |
#df_raster <- read.table("df_raster_global_assessment_reg6_10102016.txt",sep=",",header=T) |
|
276 |
#plot_figure <- |
|
277 |
#function_product_assessment_part2_functions <- "global_product_assessment_part2_functions_10222016.R" |
|
278 |
#source(file.path(script_path,function_product_assessment_part2_functions)) #source all functions used in this script |
|
279 |
|
|
280 |
#undebug(plot_and_animate_raster_time_series) |
|
281 |
range_year <- c(1984,1985) |
|
282 |
subset_df_time_series <- subset(df_time_series,year%in% range_year) |
|
283 |
subset_df_time_series <- subset_df_time_series[!is.na(subset_df_time_series$lf),] |
|
284 |
|
|
285 |
lf_subset <- file.path(subset_df_time_series$dir,subset_df_time_series$lf) |
|
286 |
range_year_str <- paste(range_year, sep = "_", collapse = "_") |
|
287 |
|
|
288 |
out_suffix_str <- paste(range_year_str,out_suffix,sep="_") |
|
289 |
|
|
290 |
#started on 10/22/2016 at 9.57 |
|
291 |
animation_obj <- plot_and_animate_raster_time_series(lf_subset, |
|
292 |
item_no, |
|
293 |
region_name, |
|
294 |
var_name, |
|
295 |
metric_name, |
|
296 |
NA_flag_val, |
|
297 |
filenames_figures=NULL, |
|
298 |
frame_speed=60, |
|
299 |
animation_format=".gif", |
|
300 |
zlim_val=NULL, |
|
301 |
plot_figure=T, |
|
302 |
generate_animation=T, |
|
303 |
num_cores=num_cores, |
|
304 |
out_suffix=out_suffix_str, |
|
305 |
out_dir=out_dir) |
|
306 |
|
|
307 |
zlim_val <- c(-2000,5000) |
|
308 |
animation_obj <- plot_and_animate_raster_time_series(lf_subset, |
|
309 |
item_no, |
|
310 |
region_name, |
|
311 |
var_name, |
|
312 |
metric_name, |
|
313 |
NA_flag_val, |
|
314 |
filenames_figures=NULL, |
|
315 |
frame_speed=60, |
|
316 |
animation_format=".gif", |
|
317 |
zlim_val=zlim_val, |
|
318 |
plot_figure=T, |
|
319 |
generate_animation=T, |
|
320 |
num_cores=num_cores, |
|
321 |
out_suffix=out_suffix_str, |
|
322 |
out_dir=out_dir) |
|
323 |
|
|
324 |
#ffmpeg -i yeay.gif outyeay.mp4 |
|
325 |
|
|
326 |
#/Applications/ffmpeg -r 25 -i input%3d.png -vcodec libx264 -x264opts keyint=25 -pix_fmt yuv420p -r 25 ../output.mp4 |
|
327 |
|
|
328 |
#ffmpeg -f gif -i file.gif -c:v libx264 outfile.mp4 |
|
329 |
|
|
330 |
#ffmpeg -i animation_frame_60_-2500_6000_.gif animation_frame_60_-2500_6000_.mp4 |
|
331 |
|
|
332 |
#ffmpeg -i animation_frame_60_-2500_6000_.gif animation_frame_60_-2500_6000_.mp4 |
|
333 |
|
|
334 |
#ffmpeg -f gif -i animation_frame_60_-2500_6000_.gif -vcodec libx264 -x264opts keyint=25 -pix_fmt yuv420p -r 25 outfile.mp4 |
|
335 |
#ffmpeg -f gif -i animation_frame_60_-2500_6000_.gif -vcodec libx264 -x264opts keyint=11 -pix_fmt yuv420p -r 11 outfile.mp4 |
|
336 |
|
|
337 |
#ffmpeg -r 10 -i animation_frame_60_-2500_6000_.gif animation.avi |
|
338 |
|
|
339 |
#ffmpeg -f gif -i animation_frame_60_-2500_6000_.gif -vcodec libx264 -x264opts -pix_fmt yuv420p outfile.mp4 |
|
340 |
|
|
341 |
|
|
342 |
|
|
343 |
############################ END OF SCRIPT ################################## |
Also available in: Unified diff
initial commit for script to check missing tiles and predict gaps in mosaic: script part 0 global product assessment