Project

General

Profile

Download (8.99 KB) Statistics
| Branch: | Revision:
1
###  Script to compile the monthly cloud data from earth engine into a netcdf file for further processing
2

    
3
library(raster)
4
library(doMC)
5
library(multicore)
6
library(foreach)
7
#library(doMPI)
8
registerDoMC(4)
9
#beginCluster(4)
10

    
11
wd="~/acrobates/adamw/projects/cloud"
12
setwd(wd)
13

    
14
tempdir="tmp"
15
if(!file.exists(tempdir)) dir.create(tempdir)
16

    
17
##  Get list of available files
18
df=data.frame(path=list.files("/mnt/data2/projects/cloud/mod09",pattern="*.tif$",full=T,recur=T),stringsAsFactors=F)
19
df[,c("region","year","month")]=do.call(rbind,strsplit(basename(df$path),"_|[.]"))[,c(1,2,3)]
20
df$date=as.Date(paste(df$year,"_",df$month,"_15",sep=""),"%Y_%m_%d")
21

    
22
## add stats to test for missing data
23
addstats=F
24
if(addstats){
25
    df[,c("max","min","mean","sd")]=do.call(rbind.data.frame,mclapply(1:nrow(df),function(i) as.numeric(sub("^.*[=]","",grep("STATISTICS",system(paste("gdalinfo -stats",df$path[i]),inter=T),value=T)))))
26
    table(df$sd==0)
27
}
28

    
29
## subset to testtiles?
30
#df=df[df$region%in%testtiles,]
31
#df=df[df$month==1,]
32
table(df$year,df$month)
33

    
34
writeLines(paste("Tiling options will produce",nrow(tiles),"tiles and ",nrow(jobs),"tile-months.  Current todo list is ",length(todo)))
35

    
36

    
37
## drop some if not complete
38
#df=df[df$month%in%1:9&df$year%in%c(2001:2012),]
39
rerun=F  # set to true to recalculate all dates even if file already exists
40

    
41
## Loop over existing months to build composite netcdf files
42
foreach(date=unique(df$date)) %dopar% {
43
    ## get date
44
  print(date)
45
  ## Define output and check if it already exists
46
  vrtfile=paste(tempdir,"/mod09_",date,".vrt",sep="")
47
  ncfile=paste(tempdir,"/mod09_",date,".nc",sep="")
48
  tffile=paste(tempdir,"/mod09_",date,".tif",sep="")
49

    
50
  if(!rerun&file.exists(ncfile)) return(NA)
51
  ## merge regions to a new netcdf file
52
#  system(paste("gdal_merge.py -o ",tffile," -init -32768  -n -32768.000 -ot Int16 ",paste(df$path[df$date==date],collapse=" ")))
53
  system(paste("gdalbuildvrt -overwrite -srcnodata -32768 -vrtnodata -32768 ",vrtfile," ",paste(df$path[df$date==date],collapse=" ")))
54
  ## Warp to WGS84 grid and convert to netcdf
55
  ##ops="-t_srs 'EPSG:4326' -multi -r cubic -te -180 0 180 10 -tr 0.008333333333333 -0.008333333333333 -wo SOURCE_EXTRA=50" #-wo SAMPLE_GRID=YES -wo SAMPLE_STEPS=100
56
  ops="-t_srs 'EPSG:4326' -multi -r cubic -te -180 -90 180 90 -tr 0.008333333333333 -0.008333333333333  -wo SOURCE_EXTRA=50"
57

    
58
  system(paste("gdalwarp -overwrite ",ops," -et 0 -srcnodata -32768 -dstnodata -32768 ",vrtfile," ",tffile," -ot Int16"))
59
  system(paste("gdal_translate -of netCDF ",tffile," ",ncfile))
60
                                        #  system(paste("gdalwarp -overwrite ",ops," -srcnodata -32768 -dstnodata -32768 -of netCDF ",vrtfile," ",tffile," -ot Int16"))
61
  file.remove(tffile)
62
  setwd(wd)
63
  system(paste("ncecat -O -u time ",ncfile," ",ncfile,sep=""))
64
## create temporary nc file with time information to append to MOD06 data
65
  cat(paste("
66
    netcdf time {
67
      dimensions:
68
        time = 1 ;
69
      variables:
70
        int time(time) ;
71
      time:units = \"days since 2000-01-01 00:00:00\" ;
72
      time:calendar = \"gregorian\";
73
      time:long_name = \"time of observation\"; 
74
    data:
75
      time=",as.integer(date-as.Date("2000-01-01")),";
76
    }"),file=paste(tempdir,"/",date,"_time.cdl",sep=""))
77
system(paste("ncgen -o ",tempdir,"/",date,"_time.nc ",tempdir,"/",date,"_time.cdl",sep=""))
78
system(paste("ncks -A ",tempdir,"/",date,"_time.nc ",ncfile,sep=""))
79
## add other attributes
80
  system(paste("ncrename -v Band1,CF ",ncfile,sep=""))
81
  system(paste("ncatted ",
82
               " -a units,CF,o,c,\"%\" ",
83
#               " -a valid_range,CF,o,b,\"0,100\" ",
84
               " -a scale_factor,CF,o,f,\"0.1\" ",
85
               " -a _FillValue,CF,o,f,\"-32768\" ",
86
               " -a long_name,CF,o,c,\"Cloud Frequency(%)\" ",
87
               " -a NETCDF_VARNAME,CF,o,c,\"Cloud Frequency(%)\" ",
88
               " -a title,global,o,c,\"Cloud Climatology from MOD09 Cloud Mask\" ",
89
               " -a institution,global,o,c,\"Jetz Lab, EEB, Yale University, New Haven, CT\" ",
90
               " -a source,global,o,c,\"Derived from MOD09GA Daily Data\" ",
91
               " -a comment,global,o,c,\"Developed by Adam M. Wilson (adam.wilson@yale.edu / http://adamwilson.us)\" ",
92
               ncfile,sep=""))
93

    
94
               ## add the fillvalue attribute back (without changing the actual values)
95
#system(paste("ncatted -a _FillValue,CF,o,b,-32768 ",ncfile,sep=""))
96

    
97
if(as.numeric(system(paste("cdo -s ntime ",ncfile),intern=T))<1) {
98
  print(paste(ncfile," has no time, deleting"))
99
  file.remove(ncfile)
100
}
101
  print(paste(basename(ncfile)," Finished"))
102

    
103

    
104
}
105

    
106

    
107
### merge all the tiles to a single global composite
108
#system(paste("ncdump -h ",list.files(tempdir,pattern="mod09.*.nc$",full=T)[10]))
109
system(paste("cdo -O  mergetime -setctomiss,-32768 ",paste(list.files(tempdir,pattern="mod09.*.nc$",full=T),collapse=" ")," data/cloud_monthly.nc"))
110

    
111
#  Overall mean
112
system(paste("cdo -O  -chname,CF,CF_annual -timmean data/cloud_monthly.nc  data/cloud_mean.nc"))
113

    
114
### generate the monthly mean and sd
115
#system(paste("cdo -P 10 -O merge -ymonmean data/mod09.nc -chname,CF,CF_sd -ymonstd data/mod09.nc data/mod09_clim.nc"))
116
system(paste("cdo  -f nc4c -O -ymonmean data/cloud_monthly.nc data/cloud_ymonmean.nc"))
117
## standard deviations, had to break to limit memory usage
118
system(paste("cdo  -f nc4c -O -chname,CF,CF_sd -ymonstd -selmon,1,2,3,4,5,6 data/cloud_monthly.nc data/cloud_ymonsd_1-6.nc"))
119
system(paste("cdo  -f nc4c -O -chname,CF,CF_sd -ymonstd -selmon,7,8,9,10,11,12 data/cloud_monthly.nc data/cloud_ymonsd_7-12.nc"))
120
system(paste("cdo  -f nc4c -O mergetime  data/cloud_ymonsd_1-6.nc  data/cloud_ymonsd_7-12.nc data/cloud_ymonstd.nc"))
121

    
122

    
123
#if(!file.exists("data/mod09_metrics.nc")) {
124
    system("cdo -f nc4c -chname,CF,CFmin -timmin data/cloud_ymonmean.nc data/cloud_min.nc")
125
    system("cdo -f nc4c -chname,CF,CFmax -timmax data/cloud_ymonmean.nc data/cloud_max.nc")
126
    system("cdo -f nc4c -chname,CF,CFsd -timstd data/cloud_ymonmean.nc data/cloud_std.nc")
127
#    system("cdo -f nc2 merge data/mod09_std.nc data/mod09_min.nc data/cloud_max.nc data/cloud_metrics.nc")
128
#    system("cdo merge -chname,CF,CFmin -timmin data/cloud_ymonmean.nc -chname,CF,CFmax -timmax data/cloud_ymonmean.nc  -chname,CF,CFsd -timstd data/cloud_ymonmean.nc  data/cloud_metrics.nc")
129
#}
130

    
131

    
132

    
133

    
134

    
135

    
136

    
137
### Long term summaries
138
seasconc <- function(x,return.Pc=T,return.thetat=F) {
139
          #################################################################################################
140
          ## Precipitation Concentration function
141
          ## This function calculates Precipitation Concentration based on Markham's (1970) technique as described in Schulze (1997)
142
          ## South Africa Atlas of Agrohydology and Climatology - R E Schulze, M Maharaj, S D Lynch, B J Howe, and B Melvile-Thomson
143
          ## Pages 37-38
144
          #################################################################################################
145
          ## x is a vector of precipitation quantities - the mean for each factor in "months" will be taken,
146
          ## so it does not matter if the data are daily or monthly, as long as the "months" factor correctly
147
          ## identifies them into 12 monthly bins, collapse indicates whether the data are already summarized as monthly means.
148
          #################################################################################################
149
          theta=seq(30,360,30)*(pi/180)                                       # set up angles for each month & convert to radians
150
                  if(sum(is.na(x))==12) { return(cbind(Pc=NA,thetat=NA)) ; stop}
151
                  if(return.Pc) {
152
                              rt=sqrt(sum(x * cos(theta))^2 + sum(x * sin(theta))^2)    # the magnitude of the summation
153
                                        Pc=as.integer(round((rt/sum(x))*100))}
154
                  if(return.thetat){
155
                              s1=sum(x*sin(theta),na.rm=T); s2=sum(x*cos(theta),na.rm=T)
156
                                        if(s1>=0 & s2>=0)  {thetat=abs((180/pi)*(atan(sum(x*sin(theta),na.rm=T)/sum(x*cos(theta),na.rm=T))))}
157
                                        if(s1>0 & s2<0)  {thetat=180-abs((180/pi)*(atan(sum(x*sin(theta),na.rm=T)/sum(x*cos(theta),na.rm=T))))}
158
                                        if(s1<0 & s2<0)  {thetat=180+abs((180/pi)*(atan(sum(x*sin(theta),na.rm=T)/sum(x*cos(theta),na.rm=T))))}
159
                                        if(s1<0 & s2>0)  {thetat=360-abs((180/pi)*(atan(sum(x*sin(theta),na.rm=T)/sum(x*cos(theta),na.rm=T))))}
160
                             thetat=as.integer(round(thetat))
161
                            }
162
                  if(return.thetat&return.Pc) return(c(conc=Pc,theta=thetat))
163
                  if(return.Pc)          return(Pc)
164
                  if(return.thetat)  return(thetat)
165
        }
166

    
167

    
168

    
169
## read in monthly dataset
170
mod09=brick("data/cloud_ymonmean.nc",varname="CF")
171
plot(mod09[1])
172

    
173
mod09_seas=calc(mod09,seasconc,return.Pc=T,return.thetat=F,overwrite=T,filename="data/mod09_seas.nc",NAflag=255,datatype="INT1U")
174
mod09_seas2=calc(mod09,seasconc,return.Pc=F,return.thetat=T,overwrite=T,filename="data/mod09_seas_theta.nc",datatype="INT1U")
175

    
176
plot(mod09_seas)
(47-47/51)