Project

General

Profile

« Previous | Next » 

Revision 2035b9a1

Added by Benoit Parmentier over 8 years ago

adding legend and modifying titles for mosaic daily figures poster NASA

View differences:

climate/research/oregon/interpolation/NASA2016_conference_temperature_predictions.R
186 186

  
187 187
out_dir <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/assessment"
188 188

  
189
create_out_dir_param <- TRUE #param 9, arg 
190

  
191 189
#run_figure_by_year <- TRUE # param 10, arg 7
192 190
list_year_predicted <- "1984,2014"
193 191

  
194 192
file_format <- ".tif" #format for mosaiced files # param 11
195 193
NA_flag_val <- -32768  #No data value, # param 12
196
#-32768
194

  
197 195
#num_cores <- 6 #number of cores used # param 13, arg 8
198 196
plotting_figures <- TRUE #running part2 of assessment to generate figures... # param 14
199
#num_cores <- args[8] #number of cores used # param 13, arg 8
200 197
num_cores <- 11 #number of cores used # param 13, arg 8
201 198
#python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" #PARAM 30
202 199
python_bin <- "/usr/bin" #PARAM 30
......
213 210

  
214 211
df_centroids_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/output_reg4_1999/df_centroids_19990701_reg4_1999.txt"
215 212

  
216
#raster_name_lf <- c("/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990101_reg4_1999_m_gam_CAI_dailyTmax_19990101_reg4_1999.tif",
217
#                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990102_reg4_1999_m_gam_CAI_dailyTmax_19990102_reg4_1999.tif",
218
#                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990103_reg4_1999_m_gam_CAI_dailyTmax_19990103_reg4_1999.tif",
219
#                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990701_reg4_1999_m_gam_CAI_dailyTmax_19990701_reg4_1999.tif",
220
#                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990702_reg4_1999_m_gam_CAI_dailyTmax_19990702_reg4_1999.tif",
221
#                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19990703_reg4_1999_m_gam_CAI_dailyTmax_19990703_reg4_1999.tif")
222

  
223 213
raster_name_lf <- c("/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920101_reg4_1992_m_gam_CAI_dailyTmax_19920101_reg4_1992.tif",
224 214
                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920102_reg4_1992_m_gam_CAI_dailyTmax_19920102_reg4_1992.tif",
225 215
                    "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920103_reg4_1992_m_gam_CAI_dailyTmax_19920103_reg4_1992.tif",
......
230 220
#l_dates <- c("19990101","19990102","19990103","19990701","19990702","19990703")
231 221
l_dates <- c("19920101","19920102","19920103","19920701","19920702","19990703")
232 222

  
233

  
234 223
##################### START SCRIPT #################
235 224

  
236 225
####### PART 1: Read in data ########
......
244 233

  
245 234
setwd(out_dir)
246 235

  
247

  
248 236
###########  ####################
249 237

  
250 238
#start_date <- day_to_mosaic_range[1]
......
271 259
plot(r_mosaic_scaled,y=6,zlim=c(-50,50))
272 260
plot(r_mosaic_scaled,zlim=c(-50,50),col=matlab.like(255))
273 261

  
274
month_name <- month.name()
275
l_dates <- as.Date(strptime(date_proc,"%Y%m%d"))
276

  
277
#s.range <- c(min(minValue(pred_temp_s)), max(maxValue(pred_temp_s)))
278
#s.range <- s.range+c(5,-5)
279
#col.breaks <- pretty(s.range, n=200)
280
#lab.breaks <- pretty(s.range, n=100)
281
#temp.colors <- colorRampPalette(c('blue', 'white', 'red'))
282
#max_val<-s.range[2]
283
#min_val <-s.range[1]
284
#max_val<- -10
285
#min_val <- 0
286

  
287 262
#layout_m<-c(1,3) #one row two columns
288
date_proc <- l_dates[i]
289
levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255))
263
#levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255))
290 264
#levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255))
291 265

  
292 266
#png(paste("Figure7a__spatial_pattern_tmax_prediction_levelplot_",date_selected,out_prefix,".png", sep=""),
......
300 274
  
301 275
  date_proc <- l_dates[i]
302 276
  r_pred <- subset(r_mosaic_scaled,i)
303
  
277
  NAvalue(r_pred)<- -3399999901438340239948148078125514752.000
278
 
279
  date_proc <- l_dates[i]
280
  date_val <- as.Date(strptime(date_proc,"%Y%m%d"))
281
  #month_name <- month.name(date_val)
282
  month_str <- format(date_val, "%b") ## Month, char, abbreviated
283
  year_str <- format(date_val, "%Y") ## Year with century
284
  day_str <- as.numeric(format(date_val, "%d")) ## numeric month
285
  date_str <- paste(month_str," ",day_str,", ",year_str,sep="")
286
 
304 287
  res_pix <- 1200
305 288
  #res_pix <- 480
306 289
  col_mfrow <- 1
307 290
  row_mfrow <- 1
308 291
  
309
  png_filename <-  file.path(out_dir_str,paste("Figure4_clim_mosaics_day_","_",date_proc,"_",reg_name,"_",out_suffix,".png",sep =""))
310
  title_str <-  paste("Predicted ",variable_name, " on ",date_proc , " ", sep = "")
292
  png_filename <-  file.path(out_dir,paste("Figure4_clim_mosaics_day_","_",date_proc,"_",region_name,"_",out_suffix,".png",sep =""))
293
  title_str <-  paste("Predicted ",variable_name, " on ",date_str , " ", sep = "")
311 294
  
312 295
  png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix)
313
  plot(r_pred,main =title_str,cex.main =1.5,col=matlab.like(255))
296
  plot(r_pred,main =title_str,cex.main =1.5,col=matlab.like(255),zlim=c(-50,50),
297
       legend.shrink=0.8,legend.width=0.8)
298
       #axis.args = list(cex.axis = 1.6), #control size of legend z
299
       #legend.args=list(text='dNBR', side=4, line=2.5, cex=2.2))
300
       #legend.args=list(text='dNBR', side=4, line=2.49, cex=1.6))
314 301
  dev.off()
315 302

  
316 303
}
317 304

  
305

  
318 306
#### Extract time series
319 307

  
320 308
#-65,-22

Also available in: Unified diff