Project

General

Profile

« Previous | Next » 

Revision 215cad8e

Added by Benoit Parmentier over 10 years ago

contributions of covariates OR paper, slight modifications, adding LST climatologies figures

View differences:

climate/research/oregon/interpolation/contribution_of_covariates_paper_interpolation.R
4 4
#different covariates using two baselines. Accuracy methods are added in the the function script to evaluate results.
5 5
#Figures, tables and data for the contribution of covariate paper are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier                                                                      
7
#MMODIFIED ON: 10/15/2013            
8
#Version: 4
7
#MODIFIED ON: 05/21/2014            
8
#Version: 5
9 9
#PROJECT: Environmental Layers project                                     
10 10
#################################################################################################
11 11

  
......
37 37
library(ncf)
38 38
#### FUNCTION USED IN SCRIPT
39 39

  
40
function_analyses_paper <-"contribution_of_covariates_paper_interpolation_functions_10152013.R"
40
function_analyses_paper <-"contribution_of_covariates_paper_interpolation_functions_05212014.R"
41 41

  
42 42
##############################
43 43
#### Parameters and constants  
......
60 60
in_dir6 <- "/data/project/layers/commons/Oregon_interpolation/output_data_365d_kriging_daily_mults1_lst_comb3_10112013"
61 61
in_dir7 <-"/data/project/layers/commons/Oregon_interpolation/output_data_365d_gwr_daily_mults1_lst_comb3_10132013"
62 62

  
63
out_dir<-"/home/parmentier/Data/IPLANT_project/paper_analyses_tables_fig_08032013"
64
setwd(out_dir)
65 63

  
66 64
infile_reg_outline <- "/data/project/layers/commons/data_workflow/inputs/region_outlines_ref_files/OR83M_state_outline.shp"  #input region outline defined by polygon: Oregon
67 65
met_stations_outfiles_obj_file<-"/data/project/layers/commons/data_workflow/output_data_365d_gam_fus_lst_test_run_07172013/met_stations_outfiles_obj_gam_fusion__365d_gam_fus_lst_test_run_07172013.RData"
68 66
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
69 67
y_var_name <- "dailyTmax"
70
out_prefix<-"analyses_10152013"
68
out_prefix<-"_05252014"
69
out_dir<-"/home/parmentier/Data/IPLANT_project/paper_contribution_covar_analyses_tables_fig"
70
setwd(out_dir)
71

  
72
#out_dir<-"/home/parmentier/Data/IPLANT_project/paper_multitime_scale__analyses_tables"
73
create_out_dir_param = TRUE
74

  
75
#Create output directory
76

  
77
if(create_out_dir_param==TRUE){
78
  out_dir <- create_dir_fun(out_dir,out_prefix)
79
  setwd(out_dir)
80
}else{
81
  setwd(out_dir) #use previoulsy defined directory
82
}
71 83

  
72 84
#method_interpolation <- "gam_daily"
73 85
covar_obj_file_1 <- "covar_obj__365d_gam_day_lst_comb3_08132013.RData"
......
99 111
#####
100 112
s_raster <- brick(infile_covariates)
101 113
names(s_raster)<-covar_names
114
ref_rast_name <-"/data/project/layers/commons/data_workflow/inputs/region_outlines_ref_files/mean_day244_rescaled.rst"  #local raster name defining resolution, exent: oregon
115
ref_rast_d001 <-"/data/project/layers/commons/data_workflow/inputs/region_outlines_ref_files/mean_day001_rescaled.rst"
102 116

  
103 117
raster_prediction_obj_1 <-load_obj(file.path(in_dir1,raster_obj_file_1)) #comb3 (baseline 2)
104 118
raster_prediction_obj_2 <-load_obj(file.path(in_dir2,raster_obj_file_2)) #comb4 (baseline 1)
......
223 237
####### Now create figures #############
224 238

  
225 239
#figure 1: study area
226
#figure 2: methodological worklfow
227
#figure 3:Figure 3. MAE/RMSE and distance to closest fitting station.
228
#Figure 4. RMSE and MAE, mulitisampling and hold out for FSS and GAM.
229
#Figure 5. Overtraining tendency
230
#Figure 6: Spatial pattern of prediction for one day
240
#figure 2: methodological worklfow (generated outside R)
241
#figure 3: LST daily and monthly climatology
242
#figure 4: MAE/RMSE and distance to closest fitting station.
243
#Figure 5. RMSE and MAE, mulitisampling and hold out for FSS and GAM.
244
#Figure 6. Overtraining tendency
245
#Figure 7a: Spatial pattern of prediction for one day
246
#figure 7b: Spatial autocorrelation profile : Moran's vs lag distance
247
#Figure 8: Figure 8. (a) Monthly MAE averages for the three interpolation methods: GAM, GWR and Kriging.(b) Monthly MAE boxplot for GAM.
248
#Figure 9: difference image
231 249

  
232 250
### Figure 1: Oregon study area
233 251
#3 parameters from output
......
286 304
box()
287 305
dev.off()
288 306

  
307
#########################
289 308
### Figure 2:  Method comparison workflow 
290 309

  
291 310
# Workflow figure is not generated in R
292 311

  
312
##########################
313
### Figure 3: LST averaging: daily mean compared to monthly mean
314

  
315
#interp_area <- readOGR(dsn=dirname(infile_reg_outline),sub(".shp","",basename(infile_reg_outline)))
316

  
317
lst_md <- raster(ref_rast_name)
318
projection(lst_md)<-projection(s_raster)
319
lst_mm_09<-subset(s_raster,"mm_09")
320

  
321
lst_md<-raster(ref_rast_d001)
322
lst_md<- lst_md - 273.16
323
lst_mm_01<-subset(s_raster,"mm_01")
324

  
325
no_brks <- length(seq(min_val,max_val,by=0.1))-1
326
#temp.colors <- colorRampPalette(c('blue', 'white', 'red'))
327
#temp.colors <- colorRampPalette(c('blue', 'lightgoldenrodyellow', 'red'))
328
#temp.colors <- matlab.like(no_brks)
329
temp.colors <- colorRampPalette(c('blue', 'khaki', 'red'))
330

  
331
png(filename=paste("Figure_3_paper_Comparison_daily_monthly_mean_lst",out_prefix,".png",sep=""),width=960,height=480)
332
par(mfrow=c(1,2))
333
plot(lst_md,col=temp.colors(25))
334
plot(interp_area,add=TRUE)
335
title("Mean for January 1")
336
plot(lst_mm_01,col=temp.colors(25))
337
plot(interp_area,add=TRUE)
338
title("Mean for month of January")
339
dev.off()
340

  
293 341
################################################
294
################### Figure 3. MAE/RMSE and distance to closest fitting station.
342
################### Figure 4. MAE/RMSE and distance to closest fitting station.
295 343

  
296 344
#Analysis accuracy in term of distance to closest station
297 345
#Assign model's names
climate/research/oregon/interpolation/contribution_of_covariates_paper_interpolation_functions.R
4 4
# interpolation code.
5 5
#Figures and data for the contribution of covariate paper are also produced.
6 6
#AUTHOR: Benoit Parmentier                                                                      #
7
#DATE: 10/15/2013            
7
#DATE: 05/21/2014            
8 8
#Version: 2
9 9
#PROJECT: Environmental Layers project                                       #
10 10
#################################################################################################
......
29 29

  
30 30
#### FUNCTION USED IN SCRIPT
31 31

  
32
function_analyses_paper <-"contribution_of_covariates_paper_interpolation_functions_08152013.R"
32
function_analyses_paper <-"contribution_of_covariates_paper_interpolation_functions_05252014.R"
33 33

  
34 34
load_obj <- function(f)
35 35
{
......
38 38
  env[[nm]]
39 39
}
40 40

  
41
create_dir_fun <- function(out_dir,out_suffix){
42
  if(!is.null(out_suffix)){
43
    out_dir <- paste(out_dir,"_",out_suffix,sep="")
44
    #out_dir <- file.path(out_dir,out_name)
45
  }
46
  #create if does not exists
47
  if(!file.exists(out_dir)){
48
    dir.create(out_dir)
49
  }
50
  return(out_dir)
51
}
52

  
41 53
extract_list_from_list_obj<-function(obj_list,list_name){
42 54
  #Create a list of an object from a given list of object using a name prodived as input
43 55
  
......
57 69
  list_tmp<-vector("list",length(obj_list))
58 70
  for (i in 1:length(obj_list)){
59 71
    tmp<-obj_list[[i]][[list_name]] #double bracket to return data.frame
60
    list_tmp[[i]]<-tmp
72
    list_tmp[[i]]<- as.data.frame(tmp) #deal with spdf cases
61 73
  }
62 74
  tb_list_tmp<-do.call(rbind.fill,list_tmp) #long rownames
63 75
  #tb_list_tmp<-do.call(rbind,list_tmp) #long rownames

Also available in: Unified diff