Revision 2168e318
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/master_script_temp.R | ||
---|---|---|
10 | 10 |
#STAGE 5: Output analyses: assessment of results for specific dates... |
11 | 11 |
# |
12 | 12 |
#AUTHOR: Benoit Parmentier |
13 |
#DATE: 08/08/2013
|
|
13 |
#DATE: 08/12/2013
|
|
14 | 14 |
|
15 | 15 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568-- |
16 | 16 |
|
... | ... | |
48 | 48 |
|
49 | 49 |
##SCRIPT USED FOR THE PREDICTIONS: Source or list all scripts here to avoid confusion on versions being run!!!! |
50 | 50 |
|
51 |
#source(file.path(script_path,"master_script_temp_08052013.R")) #Master script can be run directly...
|
|
51 |
#source(file.path(script_path,"master_script_temp_08122013.R")) #Master script can be run directly...
|
|
52 | 52 |
|
53 | 53 |
#CALLED FROM MASTER SCRIPT: |
54 | 54 |
|
... | ... | |
80 | 80 |
#met_stations_outfiles_obj_file<-"met_stations_outfiles_obj_kriging_daily__365d_kriging_daily_mults10_lst_comb3_08062013.RData" |
81 | 81 |
|
82 | 82 |
var<-"TMAX" # variable being interpolated |
83 |
out_prefix<-"_365d_gam_daily_mults10_lst_comb3_08082013" #User defined output prefix
|
|
84 |
out_suffix<-"_OR_08082013" #Regional suffix
|
|
83 |
out_prefix<-"_365d_gam_fus_lst_comb3_08122013" #User defined output prefix
|
|
84 |
out_suffix<-"_OR_08122013" #Regional suffix
|
|
85 | 85 |
out_suffix_modis <-"_05302013" #pattern to find tiles produced previously |
86 | 86 |
|
87 | 87 |
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later |
88 | 88 |
#interpolation_method<-c("gam_CAI") #other otpions to be added later |
89 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later
|
|
89 |
interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
90 | 90 |
#interpolation_method<-c("kriging_fusion") #other otpions to be added later |
91 | 91 |
#interpolation_method<-c("gwr_fusion") #other otpions to be added later |
92 | 92 |
#interpolation_method<-c("gwr_CAI") #other otpions to be added later |
93 | 93 |
#interpolation_method<-c("kriging_CAI") |
94 | 94 |
|
95 |
interpolation_method<-c("gam_daily") #other otpions to be added later |
|
95 |
#interpolation_method<-c("gam_daily") #other otpions to be added later
|
|
96 | 96 |
#interpolation_method<-c("kriging_daily") #other otpions to be added later |
97 | 97 |
#interpolation_method<-c("gwr_daily") #other otpions to be added later |
98 | 98 |
|
... | ... | |
243 | 243 |
#Set additional parameters |
244 | 244 |
#Input for sampling function... |
245 | 245 |
seed_number<- 100 #if seed zero then no seed? |
246 |
nb_sample<-10 #number of time random sampling must be repeated for every hold out proportion
|
|
247 |
step<-0.1
|
|
246 |
nb_sample<-1 #number of time random sampling must be repeated for every hold out proportion |
|
247 |
step<-0 |
|
248 | 248 |
constant<-0 #if value 1 then use the same samples as date one for the all set of dates |
249 |
prop_minmax<-c(0.1,0.7) #if prop_min=prop_max and step=0 then predicitons are done for the number of dates...
|
|
249 |
prop_minmax<-c(0.3,0.3) #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
|
|
250 | 250 |
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd |
251 |
dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102") |
|
252 |
#dates_selected<-"" # if empty string then predict for the full year specified earlier
|
|
251 |
#dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102")
|
|
252 |
dates_selected<-"" # if empty string then predict for the full year specified earlier |
|
253 | 253 |
screen_data_training<-FALSE #screen training data for NA and use same input training for all models fitted |
254 | 254 |
|
255 | 255 |
#Models to run...this can be changed for each run |
256 | 256 |
#LC1: Evergreen/deciduous needleleaf trees |
257 | 257 |
|
258 | 258 |
#Combination 3: for paper baseline=s(lat,lon)+s(elev) |
259 |
# list_models<-c("y_var ~ s(lat,lon) + s(elev_s)",
|
|
260 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(N_w)",
|
|
261 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(E_w)",
|
|
262 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST)",
|
|
263 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)",
|
|
264 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LC1)",
|
|
265 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)",
|
|
266 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)",
|
|
267 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)")
|
|
259 |
list_models<-c("y_var ~ s(lat,lon) + s(elev_s)", |
|
260 |
"y_var ~ s(lat,lon) + s(elev_s) + s(N_w)", |
|
261 |
"y_var ~ s(lat,lon) + s(elev_s) + s(E_w)", |
|
262 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST)", |
|
263 |
"y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)", |
|
264 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LC1)", |
|
265 |
"y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)", |
|
266 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)", |
|
267 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)") |
|
268 | 268 |
|
269 | 269 |
#list_models<-c("y_var ~ lat*lon + elev_s") |
270 | 270 |
|
271 |
list_models<-c("y_var ~ s(lat,lon) + s(elev_s)") |
|
271 |
#list_models<-c("y_var ~ s(lat,lon) + s(elev_s)")
|
|
272 | 272 |
|
273 | 273 |
#list_models<-c("y_var ~ lat*lon + elev_s", |
274 | 274 |
# "y_var ~ lat*lon + elev_s + N_w", |
Also available in: Unified diff
running gam fusion comb3 OR with revised screening for paper analyses