Revision 22ff01d6
Added by Benoit Parmentier almost 11 years ago
climate/research/oregon/interpolation/collecting_monthly_data_over_tiles.R | ||
---|---|---|
1 |
#################################### INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
############################ Script for assessment of scaling up on NEX ############################## |
|
3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
|
4 |
#It shows how to load the monthly data at station locations. |
|
5 |
|
|
6 |
### Loading R library and packages |
|
7 |
#library used in the workflow production: |
|
8 |
library(gtools) # loading some useful tools |
|
9 |
library(mgcv) # GAM package by Simon Wood |
|
10 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
11 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
12 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
13 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
14 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
15 |
library(raster) # Hijmans et al. package for raster processing |
|
16 |
library(gdata) # various tools with xls reading, cbindX |
|
17 |
library(rasterVis) # Raster plotting functions |
|
18 |
library(parallel) # Parallelization of processes with multiple cores |
|
19 |
library(maptools) # Tools and functions for sp and other spatial objects e.g. spCbind |
|
20 |
library(maps) # Tools and data for spatial/geographic objects |
|
21 |
library(reshape) # Change shape of object, summarize results |
|
22 |
library(plotrix) # Additional plotting functions |
|
23 |
library(plyr) # Various tools including rbind.fill |
|
24 |
library(spgwr) # GWR method |
|
25 |
library(automap) # Kriging automatic fitting of variogram using gstat |
|
26 |
library(rgeos) # Geometric, topologic library of functions |
|
27 |
#RPostgreSQL # Interface R and Postgres, not used in this script |
|
28 |
library(gridExtra) |
|
29 |
#Additional libraries not used in workflow |
|
30 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
|
31 |
library(colorRamps) |
|
32 |
|
|
33 |
#### FUNCTION USED IN SCRIPT |
|
34 |
|
|
35 |
load_obj <- function(f) |
|
36 |
{ |
|
37 |
env <- new.env() |
|
38 |
nm <- load(f, env)[1] |
|
39 |
env[[nm]] |
|
40 |
} |
|
41 |
|
|
42 |
extract_list_from_list_obj<-function(obj_list,list_name){ |
|
43 |
#Create a list of an object from a given list of object using a name prodived as input |
|
44 |
|
|
45 |
list_tmp<-vector("list",length(obj_list)) |
|
46 |
for (i in 1:length(obj_list)){ |
|
47 |
tmp<-obj_list[[i]][[list_name]] #double bracket to return data.frame |
|
48 |
list_tmp[[i]]<-tmp |
|
49 |
} |
|
50 |
return(list_tmp) #this is a data.frame |
|
51 |
} |
|
52 |
|
|
53 |
#This extract a data.frame object from raster prediction obj and combine them in one data.frame |
|
54 |
extract_from_list_obj<-function(obj_list,list_name){ |
|
55 |
#extract object from list of list. This useful for raster_prediction_obj |
|
56 |
library(plyr) |
|
57 |
|
|
58 |
list_tmp<-vector("list",length(obj_list)) |
|
59 |
for (i in 1:length(obj_list)){ |
|
60 |
tmp<-obj_list[[i]][[list_name]] #double bracket to return data.frame |
|
61 |
list_tmp[[i]]<- as.data.frame(tmp) #if spdf |
|
62 |
} |
|
63 |
tb_list_tmp<-do.call(rbind.fill,list_tmp) #long rownames |
|
64 |
#tb_list_tmp<-do.call(rbind,list_tmp) #long rownames |
|
65 |
|
|
66 |
return(tb_list_tmp) #this is a data.frame |
|
67 |
} |
|
68 |
|
|
69 |
|
|
70 |
############################## |
|
71 |
#### Parameters and constants |
|
72 |
|
|
73 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas |
|
74 |
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output" #On NEX |
|
75 |
in_dir_list <- list.dirs(path=in_dir1) #get the list of directories with resutls by 10x10 degree tiles |
|
76 |
#in_dir_list <- as.list(in_dir_list[-1]) |
|
77 |
in_dir_list <- in_dir_list[grep("output",basename(in_dir_list),invert=TRUE)] #the first one is the in_dir1 |
|
78 |
in_dir_list <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=TRUE)] |
|
79 |
#the first one is the in_dir1 |
|
80 |
# the last directory contains shapefiles |
|
81 |
|
|
82 |
##raster_prediction object : contains testing and training stations with RMSE and model object |
|
83 |
|
|
84 |
list_raster_obj_files <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="^raster_prediction_obj.*.RData",full.names=T)}) |
|
85 |
|
|
86 |
names(list_raster_obj_files)<- paste("tile",1:length(list_raster_obj_files),sep="_") |
|
87 |
|
|
88 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
89 |
|
|
90 |
###################### PART I: Generate tables to collect information over all tiles in North America ########## |
|
91 |
|
|
92 |
##Quick exploration of raster object |
|
93 |
|
|
94 |
robj1 <- load_obj(list_raster_obj_files[[12]]) #load raster object |
|
95 |
names(robj1) #list the content of raster object, it is a R list |
|
96 |
names(robj1$clim_method_mod_obj[[1]]$data_month) # monthly data for January |
|
97 |
#names(robj1$validation_mod_month_obj[[1]]$data_s) # monthly for January with predictions |
|
98 |
robj1$tb_diagnostic_v[1:10,] #first 10 rows of accuarcy metrics per day and model (for specific tile) |
|
99 |
robj1$summary_metrics_v # accuracy averages per model (for specific tile) |
|
100 |
|
|
101 |
#load data_month for specific tiles |
|
102 |
data_month <- extract_from_list_obj(robj1$clim_method_mod_obj,"data_month") |
|
103 |
|
|
104 |
names(data_month) #this contains LST means (mm_1, mm_2 etc.) as well as TMax and other info |
|
105 |
|
|
106 |
#problem with tile 12...the raster ojbect has missing sub object |
|
107 |
#data_month_list <- lapply(1:length(list_raster_obj_files),x=list_raster_obj_files, |
|
108 |
# FUN=function(i,x){x<-load_obj(x[[i]]); |
|
109 |
# extract_from_list_obj(x$validation_mod_month_obj,"data_s")}) |
|
110 |
|
|
111 |
data_month_list <- lapply(1:length(list_raster_obj_files),x=list_raster_obj_files, |
|
112 |
FUN=function(i,x){x<-load_obj(x[[i]]); |
|
113 |
extract_from_list_obj(x$clim_method_mod_obj,"data_month")}) |
|
114 |
|
|
115 |
names(data_month_list) <- paste("tile","_",1:length(data_month_list),sep="") |
|
116 |
|
|
117 |
|
|
118 |
#names(data_month_list) <- basename(in_dir_list) #use folder id instead |
|
119 |
|
|
120 |
tile_id <- lapply(1:length(data_month_list), |
|
121 |
FUN=function(i,x){rep(names(x)[i],nrow(x[[i]]))},x=data_month_list) |
|
122 |
data_month_NAM <- do.call(rbind.fill,data_month_list) #combined data_month for "NAM" North America |
|
123 |
data_month_NAM$tile_id <- unlist(tile_id) |
|
124 |
|
|
125 |
#plot(mm_01 ~ elev_s,data=data_month_NAM) #Jan across all tiles |
|
126 |
#plot(mm_06 ~ elev_s,data=data_month_NAM) #June across all tiles |
|
127 |
#plot(TMax ~ mm_01,data=data_month_NAM) #monthly tmax averages and LST across all tiles |
|
128 |
|
|
129 |
###### Additional information ###### |
|
130 |
|
|
131 |
# #LAND COVER INFORMATION (Tunamu et al., Jetz lab) |
|
132 |
|
|
133 |
# LC1: Evergreen/deciduous needleleaf trees |
|
134 |
# LC2: Evergreen broadleaf trees |
|
135 |
# LC3: Deciduous broadleaf trees |
|
136 |
# LC4: Mixed/other trees |
|
137 |
# LC5: Shrubs |
|
138 |
# LC6: Herbaceous vegetation |
|
139 |
# LC7: Cultivated and managed vegetation |
|
140 |
# LC8: Regularly flooded shrub/herbaceous vegetation |
|
141 |
# LC9: Urban/built-up |
|
142 |
# LC10: Snow/ice |
|
143 |
# LC11: Barren lands/sparse vegetation |
|
144 |
# LC12: Open water |
|
145 |
|
|
146 |
## LST information: mm_01, mm_02 ...to mm_12 are monthly mean LST at station locaitons |
|
147 |
## LST information: nobs_01, nobs_02 ... to nobs_12 number of valid obs used in mean LST averages |
|
148 |
## TMax : monthly mean tmax at meteorological stations |
|
149 |
## nbs_stt: number of stations used in the monthly mean tmax at stations |
|
150 |
### |
|
151 |
|
Also available in: Unified diff
assessing scaling up, script showing how to collect monthly stations information from North America tiles