Project

General

Profile

« Previous | Next » 

Revision 298461c0

Added by Benoit Parmentier almost 9 years ago

analyses of extreme values part 5 assessment, examining frequency of extremes by tiles

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part5.R
283 283
  stat_val <- c(std_dev_val,mean_val,median_val,max_val,min_val,n_val)
284 284
  df_stat <- data.frame(stat_name=stat_name,stat_val=stat_val)
285 285
  
286
  threshold_val <- c(5,6,10)
287
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshold_val[1])
288
  100*n_threshold_val/n_val
289

  
290
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshold_val[2])
291
  100*n_threshold_val/n_val
292
  
293
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshold_val[3])
294
  100*n_threshold_val/n_val
295
  
296
  #Find out where these values are located...by mapping extremes!
297
  
298
  
286
  model_name <- c("mod1","mod_kr")
287
  threshold_val <- c(5,10,20,50)
299 288
  
300 289
  ###########################
301 290
  ### Figure 1: plot location of the study area with tiles processed
......
304 293
  #list_shp_reg_files <- df_tiled_processed$shp_files
305 294
  
306 295
  #list_shp_reg_files<- as.character(df_tile_processed$shp_files) #this could be the solution!!
296
  #Use melt!! quick solution
307 297
  list_shp_reg_files <- as.character(basename(unique(df_tile_processed$shp_files))) #this could be the solution!!
308
  #the shapefiles must be copied in the proper folder!!!
309
  #list_shp_reg_files<- file.path(in_dir,in_dir_list[1],"shapefile",list_shp_reg_files)
310
  #list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
311
  #          as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files))
312
  #list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
313
                                  #"shapefiles",basename(list_shp_reg_files))
314
  
298
  list_tile_id <- as.character((unique(df_tile_processed$tile_id))) #this is in the order of appearance
299
  #list_tile_lat <- as.character((unique(df_tile_processed$lat))) #this is in the order of appearance
300
  #list_tile_lon <- as.character((unique(df_tile_processed$lon))) #this is in the order of appearance
301

  
302
  #df_tile_processed$shp_files2 <- basename(df_tile_processed$shp_files)
303
  df_tiles_reg <- data.frame(shp_files=(list_shp_reg_files),tile_id=list_tile_id)
304
  df_tiles_reg$tile_id <- as.character(df_tiles_reg$tile_id)
305
  #,lat=list_tile_lat,lon=list_tile_lon)
306
  #cast(df_tile_processed, shp_files ~ tile_id+lat+lon, mean, value = 'income')
307

  
315 308
  ### Potential function starts here:
316 309
  #function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix)
317 310
  
......
367 360
  centroids_pts <- remove_errors_list(centroids_pts) #[[!inherits(shps_tiles,"try-error")]]
368 361
  #centroids_pts <- tmp_pts 
369 362
  
370
  #plot info: with labels
363
  df_pts <- as.data.frame(do.call(rbind,tmp_pts))
364
  #df_pts <- cbind(df_pts,df_tiles_reg)
365
  df_tiles_reg <- cbind(df_pts,df_tiles_reg) #(shp_files=(list_shp_reg_files),tile_id=list_tile_id)
366
  df_tiles_reg$id <- unlist(lapply(strsplit(df_tiles_reg$tile_id,"_"),FUN=function(x){x[2]}))
367
  
368
    #plot info: with labels
371 369
  res_pix <-1200
372 370
  col_mfrow <- 1 
373 371
  row_mfrow <- 1
374 372
  
375
  png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""),
373
  png(filename=paste("Figure1a_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""),
376 374
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
377 375
  
378 376
  plot(reg_layer)
......
399 397
  
400 398
  dev.off()
401 399
  
400
  
402 401
  list_outfiles[[counter_fig+1]] <- paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep="")
403 402
  counter_fig <- counter_fig+1
404 403
  #this will be changed to be added to data.frame on the fly
......
411 410
  ## Figure 2a
412 411
 
413 412
  #Plot location of extremes and select them for further analyses?
414
  
415 413

  
416
  ## Number of tiles with information:
417
  sum(df_tile_processed$metrics_v) #26,number of tiles with raster object
418
  length(df_tile_processed$metrics_v) #26,number of tiles in the region
419
  sum(df_tile_processed$metrics_v)/length(df_tile_processed$metrics_v) #80 of tiles with info
420
  
421
  #coordinates
422
  try(coordinates(summary_metrics_v) <- c("lon","lat"))
423
  #try(coordinates(summary_metrics_v) <- c("lon.y","lat.y"))
424
  
425
  #threshold_missing_day <- c(367,365,300,200)
426
  
427
  nb<-nrow(subset(summary_metrics_v,model_name=="mod1"))  
428
  sum(subset(summary_metrics_v,model_name=="mod1")$n_missing)/nb #33/35
429
  
430 414

  
431 415
  j<-1 #for model name 1,mod1
432
  model_name <- c("mod1","mod_kr")
416
  #model_name <- c("mod1","mod_kr")
417
  #threshold_val <- c(5,10,20,50)
418
  
433 419
  for(i in 1:length(threshold_val)){
434 420
    
421
    tb_tmp <- try(subset(tb_subset,tb_subset[[metric_name]]>threshold_val[i]))
422
    hist(tb_tmp$rmse)
435 423
    
436
    tb_subset <- subset(tb_subset,tb_subset[[metric_name]]>threshold_val[i])
437
    
438
    df_extremes <- as.data.frame(table(tb_subset$tile_id))
439
    names(df_extremes)<- c("tile_id","freq_extremes")
440
    tb_sorted <- merge(tb_subset,df_extremes,"tile_id")
441
    tb_sorted <- arrange(tb_sorted,desc(freq_extremes)) #[,c("pred_mod","rmse","mae","tile_id")]
442
    coordinates(tb_sorted) <- c("lon","lat")
424
    if(nrow(tb_subset)>0){
425
      
426
      df_extremes <- as.data.frame(table(tb_tmp$tile_id))
427
      names(df_extremes)<- c("tile_id","freq_extremes")
428
      tb_sorted <- merge(tb_tmp,df_extremes,"tile_id")
429
      tb_sorted <- arrange(tb_sorted,desc(freq_extremes)) #[,c("pred_mod","rmse","mae","tile_id")]
430
      coordinates(tb_sorted) <- c("lon","lat")
431
      df_extremes <- arrange(df_extremes,desc(freq_extremes))
443 432
    
444
    fig_filename <- paste("Figure2a_barplot_extremes_val_centroids_tile_",model_name[j],"_",threshold_val[i],
433
      fig_filename <- paste("Figure2a_barplot_extremes_val_centroids_tile_",model_name[j],"_",threshold_val[i],
445 434
                       "_",out_suffix,".png",sep="")
435
      
436
      #res_pix <- 1200
437
      res_pix <- 960
438
      col_mfrow <- 1
439
      row_mfrow <- 1
440
      #only mod1 right now
441
      png(filename=fig_filename,
442
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
443

  
444
      #barplot(df_ac_mod$rmse, names.arg=x)
445
      barplot(df_extremes$freq_extremes,main=paste("Extremes threshold val for ",threshold_val[i],"deg C",sep=""),
446
            ylab="frequency",xlab="tile_id",names.arg=df_extremes$tile_id,las=2)    
447
      #barplot(table(tb_subset$tile_id),main=paste("Extremes threshold val for ",threshold_val[i],sep=""),
448
       #        ylab="frequency",xlab="tile_id",las=2)
449
      dev.off()
450
      list_outfiles[[counter_fig+i]] <- fig_filename
446 451

  
447
    barplot(table(tb_subset$tile_id),main=paste("Extremes threshold val for ",threshold_val[i],sep=""),
448
            ylab="frequency",xlab="tile_id",las=2)
449
    dev.off()
450 452

  
451
    test<-(subset(tb,tb$tile_id==unique(tb_subset$tile_id)))
452
    #df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
453
      #test<-(subset(tb,tb$tile_id==unique(tb_subset$tile_id)))
454
      #df_ac_mod <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("pred_mod","rmse","mae","tile_id")]
453 455
    
454
    #plot top three, then all,and histogram...make this a function...
455
    list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
456
      #plot top three, then all,and histogram...make this a function...
457
      #list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")]
456 458

  
457
    #summary_metrics_v$n_missing <- summary_metrics_v$n == 365
458
    #summary_metrics_v$n_missing <- summary_metrics_v$n < 365
459
    #summary_metrics_v$n_missing <- as.numeric(summary_metrics_v$n < threshold_missing_day[i])
460
    #summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1")
461
    
462
    fig_filename <- paste("Figure7a_ac_metrics_extremes_map_centroids_tile_",model_name[j],"_",threshold_val[i],
459
      fig_filename <- paste("Figure2b_ac_metrics_extremes_map_centroids_tile_",model_name[j],"_",threshold_val[i],
463 460
                       "_",out_suffix,".png",sep="")
464
    list_outfiles[[counter_fig+i]] <- fig_filename
465 461

  
466
    if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!!
467
      
468 462
      #res_pix <- 1200
469 463
      res_pix <- 960
470 464
      col_mfrow <- 1
471 465
      row_mfrow <- 1
472 466
      #only mod1 right now
473
      png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i],
474
                       "_",out_suffix,".png",sep=""),
467
      png(filename=fig_filename,
475 468
        width=col_mfrow*res_pix,height=row_mfrow*res_pix)
476 469
    
477 470
      model_name[j]
......
485 478
      try(print(p1)) #error raised if number of missing values below a threshold does not exist
486 479
      dev.off()
487 480

  
488
    } 
489
     
481
    }
482

  
483

  
490 484
    #list_outfiles[[counter_fig+i]] <- fig_filename
491 485
  }
492 486
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...

Also available in: Unified diff