Project

General

Profile

« Previous | Next » 

Revision 2a0267ad

Added by Benoit Parmentier about 12 years ago

Method comp part3,initial commit task#491 check extremes for LST and ELEV, exploratory analysis Land cover

View differences:

climate/research/oregon/interpolation/methods_comparison_assessment_part3.R
1
#####################################  METHODS COMPARISON part 3 ##########################################
2
#################################### Spatial Analysis ############################################
3
#This script utilizes the R ojbects created during the interpolation phase.                       #
4
#At this stage the script produces figures of various accuracy metrics and compare methods:       #
5
#- rank station in terms of residuals and metrics (MAE and RMSE)                                  #
6
#- calculate accuary metrics for climtology predictions...                                        #
7
#- spatial density of station network and accuracy metric                                         #
8
#- visualization of maps of prediction and difference for comparison                              #
9
#AUTHOR: Benoit Parmentier                                                                        #
10
#DATE: 10/23/2012                                                                                 #
11
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491 --                                  #
12
###################################################################################################
13

  
14
###Loading R library and packages                                                      
15
library(gtools)                                        # loading some useful tools such as mixedsort
16
library(mgcv)                                           # GAM package by Wood 2006 (version 2012)
17
library(sp)                                             # Spatial pacakge with class definition by Bivand et al. 2008
18
library(spdep)                                          # Spatial package with methods and spatial stat. by Bivand et al. 2012
19
library(rgdal)                                          # GDAL wrapper for R, spatial utilities (Keitt et al. 2012)
20
library(gstat)                                          # Kriging and co-kriging by Pebesma et al. 2004
21
library(automap)                                        # Automated Kriging based on gstat module by Hiemstra et al. 2008
22
library(spgwr)
23
library(gpclib)
24
library(maptools)
25
library(graphics)
26
library(parallel)                            # Urbanek S. and Ripley B., package for multi cores & parralel processing
27
library(raster)
28
library(rasterVis)
29
library(plotrix)   #Draw circle on graph
30
library(reshape)
31
## Functions
32
#loading R objects that might have similar names
33
load_obj <- function(f)
34
{
35
  env <- new.env()
36
  nm <- load(f, env)[1]
37
  env[[nm]]
38
}
39

  
40
###Parameters and arguments
41

  
42
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp"    #GHCN shapefile containing variables for modeling 2010                 
43
#infile2<-"list_10_dates_04212012.txt"                    #List of 10 dates for the regression
44
infile2<-"list_365_dates_04212012.txt"                    #list of dates
45
infile3<-"LST_dates_var_names.txt"                        #LST dates name
46
infile4<-"models_interpolation_05142012.txt"              #Interpolation model names
47
infile5<-"mean_day244_rescaled.rst"                       #mean LST for day 244
48
inlistf<-"list_files_05032012.txt"                        #list of raster images containing the Covariates
49
infile6<-"OR83M_state_outline.shp"
50
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE)
51

  
52
out_prefix<-"methods_09262012_"
53
#output path
54
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_07192012_GAM"
55
setwd(path)
56

  
57
##### LOAD USEFUL DATA
58

  
59
obj_list<-"list_obj_08262012.txt"                                  #Results of fusion from the run on ATLAS
60
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison" #Jupiter LOCATION on Atlas for kriging                              #Jupiter Location on XANDERS
61
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/"            #Local dropbox folder on Benoit's laptop
62
setwd(path) 
63
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
64
                                              #User defined output prefix
65

  
66
sampling_CAI<-load_obj("results2_CAI_sampling_obj_09132012_365d_GAM_CAI2_multisampling2.RData")
67
sampling_fus<-load_obj("results2_fusion_sampling_obj_10d_GAM_fusion_multisamp4_09192012.RData")
68
fus_CAI_mod<-load_obj("results2_CAI_Assessment_measure_all_09132012_365d_GAM_CAI2_multisampling2.RData")
69
gam_fus_mod1<-load_obj("results2_fusion_Assessment_measure_all_10d_GAM_fusion_multisamp4_09192012.RData")
70

  
71
filename<-sub(".shp","",infile1)             #Removing the extension from file.
72
ghcn<-readOGR(".", filename)                 #reading shapefile 
73

  
74
#CRS<-proj4string(ghcn)                       #Storing projection information (ellipsoid, datum,etc.)
75
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="")                      #Column 1 contains the names of raster files
76
inlistvar<-lines[,1]
77
inlistvar<-paste(path,"/",as.character(inlistvar),sep="")
78
covar_names<-as.character(lines[,2])                                         #Column two contains short names for covaraites
79

  
80
s_raster<- stack(inlistvar)                                                  #Creating a stack of raster images from the list of variables.
81
layerNames(s_raster)<-covar_names                                            #Assigning names to the raster layers
82
projection(s_raster)<-proj_str
83

  
84
#Create mask using land cover data
85
pos<-match("LC10",layerNames(s_raster))            #Find the layer which contains water bodies
86
LC10<-subset(s_raster,pos)
87
LC10[is.na(LC10)]<-0                               #Since NA values are 0, we assign all zero to NA
88
#LC10_mask[LC10_mask<100]<-1
89
mask_land<-LC10==100                               #All values below 100% water are assigned the value 1, value 0 is "water"
90
mask_land_NA<-mask_land                            
91
mask_land_NA[mask_land_NA==0]<-NA                  #Water bodies are assigned value 1
92

  
93
data_name<-"mask_land_OR"
94
raster_name<-paste(data_name,".rst", sep="")
95
writeRaster(mask_land, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
96
#writeRaster(r2, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
97

  
98
pos<-match("mm_01",layerNames(s_raster))
99
mm_01<-subset(s_raster,pos)
100
mm_01<-mm_01-273.15
101
mm_01<-mask(mm_01,mask_land_NA)  #Raster image used as backround
102
#mention this is the last... files
103

  
104
################# PART 1: COMPARING RESULTS USING ALL MONTHNLY DATA AND SAMPLED FROM DAILY###################
105
######## Visualize data: USING ALL MONTHLY DATA...
106

  
107
file_pat<-glob2rx("GAMCAI_tmax_pred_predicted_mod*_365d_GAM_CAI2_all_lstd_10262012.rst")   
108
lf_cai_all<-list.files(pattern=file_pat)
109
image_file<-grep(file_pat,lf_ck,value=TRUE) # using grep with "value" extracts the matching names         
110
raster_pred_k<-raster(image_file)
111

  
112
#### CHECKING RESULTS ON 10/28 BY VISUALIZING PREDICTIONS... DO THAT FOR ALL MODELS AND TWO DATES...
113

  
114
date_selected<-"20100103"
115
lf_fus<-list.files(pattern=paste("GAM_bias_tmax_predicted_mod8_",date_selected,"_30_1_365d_GAM_fusion_all_lstd_10242012.rst$",sep="")) #Search for files in relation to fusion
116
lf_cai<-list.files(pattern=paste("*CAI_tmax_pred.*",date_selected,"*.08072012_365d_GAM_CAI2.rst$",sep="")) #Search for files in relation to fusion
117

  
118
lf_cai<-list.files(pattern=paste("GAMCAI_tmax_pred_predicted_mod8_20100103_30_1_365d_GAM_CAI2_all_lstd_10262012.rst",sep=""))
119

  
120
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
121
setwd(path)
122
tmax_predicted_mod8<-raster("GAM_bias_tmax_predicted_mod8_20100103_30_1_365d_GAM_fusion_all_lstd_10242012.rst")
123
tmax_bias_mod8<-raster("GAM_bias_predicted_mod8_20100103_30_1_365d_GAM_fusion_all_lstd_10242012.rst")
124
daily_delta_tmax<-raster("fusion_daily_delta_20100103_30_1_365d_GAM_fusion_all_lstd_10242012.rst")
125
fusion<-raster("fusion_tmax_predicted_20100103_30_1_365d_GAM_fusion_all_lstd_10242012.rst")
126
LST<-(raster("mean_month1_rescaled.rst"))-273.16
127

  
128
tmp_rast<-LST+daily_delta_tmax-tmax_bias_mod8
129
dif_rast<-tmp_rast-tmax_predicted_mod8
130
eq<-tmp_rast==tmax_predicted_mod8
131
plot(tmax_predicted_mod8)
132

  
133
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI"
134
setwd(path)
135
cai_tmax_mod8_rast<-raster("GAMCAI_tmax_pred_predicted_mod8_20100103_30_1_365d_GAM_CAI2_all_lstd_10262012.rst")
136
cai_delta_rast<-raster("CAI_deltaclim_20100103_30_1_365d_GAM_CAI2_all_lstd_10262012.rst")
137
cai_clim_rast<-raster("CAI_clim_20100103_30_1_365d_GAM_CAI2_all_lstd_10262012.rst")
138
cai_climod8_rast<-raster("GAMCAI_predicted_mod8_20100103_30_1_365d_GAM_CAI2_all_lstd_10262012.rst")
139

  
140
# s.range <- c(min(minValue(diff)), max(maxValue(diff)))
141
# col.breaks <- pretty(s.range, n=50)
142
# lab.breaks <- pretty(s.range, n=5)
143
 temp.colors <- colorRampPalette(c('blue', 'white', 'red'))
144
# plot(diff, breaks=col.breaks, col=temp.colors(length(col.breaks)-1)
145
#      
146
pred_cai_mod8<-stack(cai_climod8_rast,cai_delta_rast,cai_tmax_mod8_rast)
147
layerNames(pred_cai_mod8)<-paste(c("cai_climod8_rast","cai_delta_rast","cai_tmax_mod8_rast"),"20100103",sep=" ")
148
pred_fus_mod8<-stack(tmax_bias_mod8,daily_delta_tmax,LST,tmax_predicted_mod8)
149
layerNames(pred_fus_mod8)<-paste(c("tmax_bias_mod8","daily_delta_tmax","LST","tmax_predicted_mod8"),"20100103",sep=" ")
150
pred_fus_cai_comp<-stack(pred_fus_mod8,pred_cai_mod8)
151

  
152
X11(12,12)
153
#for (i in 1:)
154
#plot(pred_cai_mod8,col=temp.colors)
155
plot(pred_cai_mod8,col=temp.colors(25))
156
#title("prediction for 20100103")
157
plot(pred_fus_mod8,col=temp.colors(25))
158
plot(pred_fus_cai_comp,col=temp.colors(25))
159
dev.off
160
tmp_rast2<-cai_delta_rast + cai_climod8_rast
161
dif2_rast<-tmp_rast2-cai_tmax_mod8_rast
162

  
163
dif2<-cai_rast-tmax_predicted_mod8 #This seems to be the same!!!
164
plot(cai_climod8_rast) #THe bias surface is different when compared to the climatology based on mod8
165
plot(tmax_bias_mod8)
166
plot(tmax_predicted_mod8)
167
plot(cai_tmax_rast)
168

  
169
cellStats(pred_fus_cai_comp)
170

  
171
#t<-"results2_CAI_Assessment_measure_all_08072012_365d_GAM_CAI2.RData" 
172

  
173
## Examining data with simplified CAI3 models in comparison to other: 11/03/2012
174

  
175
oldpath<-getwd()
176
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI"
177
setwd(path)
178

  
179
date_selected<-"20100103"
180
#lf_fus<-list.files(pattern=paste("GAM_bias_tmax_predicted_mod8_",date_selected,"_30_1_365d_GAM_fusion_all_lstd_10242012.rst$",sep="")) #Search for files in relation to fusion
181
file_pat<-glob2rx(paste("*tmax_pred*",date_selected,"*_365d_GAM_CAI3_all_10302012.rst",sep="")) #Search for files in relation to fusion
182
lf_cai3<-list.files(pattern=file_pat) #Search for files in relation to fusion
183

  
184
cai3_mod<-load_obj("results_mod_obj__365d_GAM_CAI3_all_10302012.RData")
185
names(cai3_mod$gam_CAI_mod[[1]]) #check names within object
186
formulas<-as.character(cai3_mod$gam_CAI_mod[[1]]$formulas)
187
rmse<-(cai3_mod$gam_CAI_mod[[1]]$tb_metrics1)
188
nmodels<-6
189
for(i in 4:(nmodels+3)){            # start of the for loop #1
190
  rmse[,i]<-as.numeric(as.character(rmse[,i]))  
191
}
192
rmse_val<-as.numeric(c(rmse[1,9],rmse[1,4:8]))
193
rmse_val<-format(rmse_val,digits=3)
194
rmse_val<-paste("(",rmse_val,")",sep="")
195
rname<-c("CAI_Kr",formulas)
196
rname<-paste(rname,rmse_val,sep=" ")
197

  
198
rast_cai3<-stack(lf_cai3)
199
rast_cai3<-mask(rast_cai3,mask_ELEV_SRTM)
200
#s_range <- c(min(minValue(diff)), max(maxValue(diff)))
201
s_range<-c(minValue(rast_cai3),maxValue(rast_cai3)) #stack min and max
202
s_range<-c(min(s_range),max(s_range))
203
col_breaks <- pretty(s_range, n=50)
204
lab_breaks <- pretty(s_range, n=5)
205
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
206
par(mfrow=c(2,3))
207
for (k in 1:length(lf_cai3)){
208
  cai3_r<-raster(rast_cai3,k)
209
  plot(cai3_r, breaks=col_breaks, col=temp_colors(length(col_breaks)-1),   
210
       axis=list(at=lab_breaks, labels=lab_breaks),main=rname[k])
211
}
212

  
213
#Wihtout setting range
214
s_range<-c(-12,18)
215
#col_breaks <- pretty(s_range, n=50)
216
#lab_breaks <- pretty(s_range, n=5)
217
col_breaks<-49
218
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
219
par(mfrow=c(2,3))
220
for (k in 1:length(lf_cai3)){
221
  cai3_r<-raster(rast_cai3,k)
222
  plot(cai3_r, col=temp_colors(col_breaks),   
223
       ,main=rname[k])
224
}
225

  
226
###### PART 2: ################
227
#### EXAMINING LST AND ELEVATION DATASETS TO CHECK FOR EXTREMES AND SELECT SCREENING VALUES....
228

  
229
# Examining ELEV_SRTM and screening out...
230

  
231
pos<-match("ELEV_SRTM",layerNames(s_raster))
232
ELEV_SRTM<-raster(s_raster,pos)
233
head(freq(ELEV_SRTM))  #Show how many pixels are below 0
234

  
235
# mask out values below zero
236
elev<-ELEV_SRTM
237
elev[0<elev]<-NA  #Remove all negative elevation
238
#Show how many were NA...
239

  
240
mask_ELEV_SRTM<-elev >0
241
quartz()
242
plot(elev, main="Elevation in Oregon")
243
savePlot(paste("elevation_Oregon",out_prefix,".png", sep=""), type="png")
244

  
245
# Examining LST data: extremes values and number of valid observation              
246

  
247
l<-list.files(pattern="mean_month.*rescaled.rst")
248
ln<-list.files(pattern="mean_month_valid_obs_.*_Sum.rst") #number of observation missing
249
l<-mixedsort(l)
250
ln<-mixedsort(ln)
251

  
252
#l <-readLines(paste(path,"/",infile6, sep=""))
253
molst<-stack(l)  #Creating a raster stack...
254
nobslst<-stack(ln)  #Creating a raster stack...
255

  
256
#setwd(old)
257
molst<-molst-273.16  #K->C          #LST stack of monthly average...
258
idx <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month')
259
molst <- setZ(molst, idx)
260
layerNames(molst) <- month.abb
261
layerNames(nobslst)<-month.abb
262

  
263
X11(width=18,height=12)
264
#PLOT THE STACK AND SAVE IMAGE
265
plot(molst,col=temp.colors(25))
266
savePlot("lst_climatology_OR.png",type="png")
267
levelplot(molst,col.regions=temp.colors(25))
268
plot(nobslst)
269
savePlot("lst_climatology_OR_nobs.png",type="png")
270
dev.off)
271

  
272
#note differnces in patternin agricultural areas and 
273
extremeValues(molst) #not yet implemented...
274
min_values<-cellStats(molst,"min")
275
max_values<-cellStats(molst,"max")
276
mean_values<-cellStats(molst,"mean")
277
sd_values<-cellStats(molst,"sd")
278
#median_values<-cellStats(molst,"median") Does not extist
279
statistics_LST_s<-cbind(min_values,max_values,mean_values,sd_values) #This shows that some values are extremes...especially in October
280
LST_stat_data<-as.data.frame(statistics_LST_s)
281
names(LST_stat_data)<-c("min","max","mean","sd")
282
# Statistics for number of valid observation stack
283
min_values<-cellStats(nobslst,"min")
284
max_values<-cellStats(nobslst,"max")
285
mean_values<-cellStats(nobslst,"mean")
286
sd_values<-cellStats(nobslst,"sd")
287
statistics_LSTnobs_s<-cbind(min_values,max_values,mean_values,sd_values) #This shows that some values are extremes...especially in October
288
LSTnobs_stat_data<-as.data.frame(statistics_LSTnobs_s)
289

  
290
X11(width=12,height=12)
291
#Plot statiscs (mean,min,max) for monthly LST images
292
plot(1:12,LST_stat_data$mean,type="b",ylim=c(-15,60),col="black",xlab="month",ylab="tmax (degree C)")
293
lines(1:12,LST_stat_data$min,type="b",col="blue")
294
lines(1:12,LST_stat_data$max,type="b",col="red")
295
text(1:12,LST_stat_data$mean,rownames(LST_stat_data),cex=1,pos=2)
296

  
297
legend("topleft",legend=c("min","mean","max"), cex=1.5, col=c("blue","black","red"),
298
       lty=1)
299
title(paste("LST statistics for Oregon", "2010",sep=" "))
300
savePlot("lst_statistics_OR.png",type="png")
301

  
302
#Plot number of valid observations for LST
303
plot(1:12,LSTnobs_stat_data$mean,type="b",ylim=c(0,280),col="black",xlab="month",ylab="tmax (degree C)")
304
lines(1:12,LSTnobs_stat_data$min,type="b",col="blue")
305
lines(1:12,LSTnobs_stat_data$max,type="b",col="red")
306
text(1:12,LSTnobs_stat_data$mean,rownames(LSTnobs_stat_data),cex=1,pos=2)
307

  
308
legend("topleft",legend=c("min","mean","max"), cex=1.5, col=c("blue","black","red"),
309
       lty=1)
310
title(paste("LST number of valid observations for Oregon", "2010",sep=" "))
311
savePlot("lst_nobs_OR.png",type="png")
312

  
313
mm_10<-raster(molst,10)
314
tab_mm_10<-freq(mm_10)  #This shows that there are only 6 pixels with values between  -86 and -89.. and 8 pixels with values between 38 and 31
315
head(tab_mm_10)
316
#screening maybe good...?
317

  
318
mm_01<-raster(molst,1)
319
tab_mm_10<-freq(mm_01)  #This shows that there are only 6 pixels with values between  -86 and -89.. and 8 pixels with values between 38 and 31
320
#head(tab_mm_10)
321

  
322
mm_07<-raster(molst,7)
323
tab_mm_10<-freq(mm_07)  #This shows that there are only 6 pixels with values between  -86 and -89.. and 8 pixels with values between 38 and 31
324
#head(tab_mm_10)
325

  
326
LST_comp<-stack(mm_01,mm_07)
327

  
328
X11(width=18,height=10)
329
#PLOT THE STACK AND SAVE IMAGE
330
plot(LST_comp,col=temp.colors(25))
331
#title("LST spatial pattern in January and August")
332
savePlot("lst_climatology_OR.png",type="png")
333

  
334

  
335
###### PART 3: EXAMANING MODEL OUTPUTS USING MOD OBJECTS TO CHECK AND COMPARE RESULTS ############
336
############ LOOKING AT SPECIFIC STATIONS...
337
path_data_cai<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI"
338
path_data_fus<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
339
setwd(path_data) #output data
340
gam_fus<-load_obj(file.path(path_data_fus,
341
                            "results2_fusion_Assessment_measure_all_365d_GAM_fusion_all_lstd_10242012.RData"))
342
gam_cai<-load_obj(file.path(path_dat_cai,
343
                            "results2_CAI_Assessment_measure_all_365d_GAM_CAI2_all_lstd_10262012.RData")  #This contains all the info
344
sampling_obj_cai<-load_obj(file.path(path_data_cai,
345
                                     "results2_CAI_sampling_obj_365d_GAM_CAI2_all_lstd_10262012.RData"))
346
sampling_date_list<-sampling_obj_cai$sampling_dat$date
347
date_selected="20100103"
348

  
349
k<-match(date_selected,sampling_date_list)
350

  
351
fus_d<-gam_fus[[k]] #object for the first date...20100103
352
fus_d$tb_metrics1   #This is a summary for validation metrics...(RMSE and MAE)
353

  
354
cai_d<-gam_cai[[k]] #object for the first date...20100103
355
cai_d$tb_metrics1   #This is a summary for validation metrics...(RMSE and MAE)
356
                  
357
names(fus_d$mod_obj) #list models, nine models: mod1, mod2,...,mod9a, mod9b
358
names(cai_d$mod_obj)
359
                  
360
mod1_f<-fus_d$mod_obj$mod1 # extract model 1 for fusion on 
361
mod4_f<-fus_d$mod_obj$mod4
362
mod7_f<-fus_d$mod_obj$mod7
363
data_sf<-fus_d$data_s
364
data_vf<-fus_d$data_v
365

  
366
plot(mod1_f)  #Examining the fit
367
plot(mod1)    #Examing the fit
368
#data_monthf<-fus_d1$data_month
369

  
370
mod1<-cai_d1$mod_obj$mod1
371
mod4<-cai_d1$mod_obj$mod4
372
mod7<-cai_d1$mod_obj$mod7
373
data_s<-cai_d1$data_s
374
data_v<-cai_d1$data_v
375
data_month<-cai_d1$data_month
376

  
377
#### COMPARE  LST AND TMAX averages over the year...  ###############
378
#### Screening necessary?
379
                  							
380
LSTD_bias_month<-vector("list",length(gam_cai))  # list to store bias information
381
data_month_list<-vector("list",length(gam_cai))  # list to store data_month used for training
382

  
383
for (i in 1:length(gam_cai)){
384
  data_month_list[[i]]<-gam_cai[[i]]$data_month
385
  #LSTD_bias_month[[i]]<-aggregate(LSTD_bias~month,data=data_month_list[[i]],mean)
386
}
387

  
388
#tmp<-do.call(rbind,LSTD_bias_month)
389
data_month_all<-do.call(rbind,data_month_list)
390

  
391
data_month_all$LST<-data_month_all$LST-273.16
392
LSTD_bias_avgm<-aggregate(LSTD_bias~month,data=data_month_all,mean)
393
LSTD_bias_sdm<-aggregate(LSTD_bias~month,data=data_month_all,sd)
394

  
395
LST_avgm<-aggregate(LST~month,data=data_month_all,mean)
396
TMax_avgm<-aggregate(TMax~month,data=data_month_all,mean)
397

  
398
#plot(LST_avgm,type="b")
399
#lines(TMax_avgm,col="blue",add=T)
400
plot(data_month_all$month,data_month_all$LST, xlab="month",ylab="LST at station")
401
title(paste("Monthly LST at stations in Oregon", "2010",sep=" "))
402
savePlot(paste("LST_at_stations_per_month_",out_prefix,".png", sep=""), type="png")
403
                  
404
tab_freq<-cbind(hist_LST$breaks,hist_LST$counts)               
405
median(data_month_all$LST,na.rm=T)
406
median(data_month_all$TMax,na.rm=T)
407
                  
408
statistics_LST_s<-as.data.frame(statistics_LST_s)
409
plot(TMax_avgm,type="b",ylim=c(0,35),col="red",xlab="month",ylab="tmax (degree C)")
410
lines(1:12,statistics_LST_s$mean_values,type="b",col="blue")
411
text(TMax_avgm[,1],TMax_avgm[,2],rownames(statistics_LST_s),cex=0.8,pos=2)
412
                  
413
legend("topleft",legend=c("TMax","LST"), cex=1, col=c("red","blue"),
414
              lty=1)
415
title(paste("Monthly mean tmax and LST at stations in Oregon", "2010",sep=" "))           
416
savePlot(paste("Temporal_profile_res",id[i],out_prefix,".png", sep=""), type="png")
417
                  
418
#Account for forest
419
data_month_all_forest<-data_month_all[data_month_all$LC1>=50,]
420
data_month_all_grass<-data_month_all[data_month_all$LC3>=10,]
421
LST_avgm_forest<-aggregate(LST~month,data=data_month_all_forest,mean)
422
LST_avgm_grass<-aggregate(LST~month,data=data_month_all_grass,mean)
423

  
424
plot(TMax_avgm,type="b",ylim=c(-7,42))
425
lines(LST_avgm,col="blue",add=T)
426
lines(LST_avgm_forest,col="green",add=T)
427
lines(LST_avgm_grass,col="red",add=T)
428
legend("topleft",legend=c("TMax","LST","LST_forest","LST_grass"), cex=0.8, col=c("black","blue","green","red"),
429
       lty=1)
430
title(paste("Monthly average tmax for stations in Oregon ", "2010",sep=""))
431

  
432
savePlot(paste("Temporal_profile_res",id[i],out_prefix,".png", sep=""), type="png")  
433
                  
434
#Check where forest >50 and grass>10
435
#Create mask using land cover data
436
pos<-match("LC1",layerNames(s_raster))            #Find the layer which contains water bodies
437
LC1<-subset(s_raster,pos)
438
LC1[is.na(LC1)]<-0                               #Since NA values are 0, we assign all zero to NA
439
LC1_50<-LC1>= 50
440
plot(LC1_50)
441
pos<-match("LC3",layerNames(s_raster))            #Find the layer which contains water bodies
442
LC3<-subset(s_raster,pos)
443
LC3[is.na(LC3)]<-0                               #Since NA values are 0, we assign all zero to NA
444
LC3_10<-LC3>= 10
445

  
446
LC1_mean <- cellStats(LC3, mean)
447
LC1_mean <- cellStats(LC3, mean)
448
#
449
avl<-c(0,10,1,10,20,2,20,30,3,30,40,4,40,50,5,50,60,6,60,70,7,70,80,8,80,90,9,90,100,10)
450
rclmat<-matrix(avl,ncol=3,byrow=TRUE)
451
LC3_rec<-reclass(LC3,rclmat)  #Loss of layer names when using reclass
452
tab_freq<-freq(LC3_rec)     
453

  
454
crosstab(LC1_50,LC3_10) #Very little overalp between classes...
455
X11(12,12)                  
456
LC_rec<-stack(LC1_50,LC3_10)    
457
layerNames(LC_rec)<-c("forest: LC1>50%","grass: LC3>10%")
458
plot(LC_rec,col=c("black","red"))
459
dev.off()
460
#legend("topleft",legend=c("fo","LST","LST_forest","LST_grass"), cex=0.8, col=c("black","blue","green","red"),
461
              #lty=1)
462
                  
463
############ PART 4: RESIDUALS ANALYSIS: ranking, plots, focus regions  ##################
464
############## EXAMINING STATION RESIDUALS ###########
465
########### CONSTANT OVER 365 AND SAMPLING OVER 365
466
#Plot daily_deltaclim_rast, bias_rast,add data_s and data_v
467
                  
468
# RANK STATION by average or median RMSE
469
# Count the number of times a station is in the extremum group of outliers...
470
# LOOK at specific date...
471
                  
472
#Examine residuals for a spciefic date...Jan, 1 using run of const_all i.e. same training over 365 dates
473
path_data_cai<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI"  #Change to constant
474
path_data_fus<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
475
setwd(path_data) #output data
476

  
477
#list files that contain raster tmax prediction (maps) for CAI and Fusion
478
#lf_c<-"GAM_predicted_mod7_20101231_30_1_365d_GAM_fusion_const_10172012.rst"
479
lf_cg<-list.files(pattern="GAM_predicted_mod2_.*_30_1_365d_GAM_fusion_const_10172012.rst$")    #changee to constant 
480
lf_ck<-list.files(pattern="fusion_tmax_predicted_.*_30_1_365d_GAM_fusion_const_10172012.rst$") #Fusion+Kriging
481
                  
482
#list files that contain model objects and ratingin-testing information for CAI and Fusion
483
fus1_c<-load_obj("results2_fusion_Assessment_measure_all_365d_GAM_fusion_const_10172012.RData")
484
#fus1_c<-load_obj("results2_fusion_Assessment_measure_all_365d_GAM_fusion_const_10172012.RData")
485
                  
486
gam_fus<-load_obj(file.path(path_data_fus,
487
                          "results2_fusion_Assessment_measure_all_365d_GAM_fusion_all_lstd_10242012.RData"))
488
gam_cai<-load_obj(file.path(path_dat_cai,
489
                          "results2_CAI_Assessment_measure_all_365d_GAM_CAI2_all_lstd_10262012.RData")  #This contains all the info
490
sampling_obj_cai<-load_obj(file.path(path_data_cai,
491
                                          "results2_CAI_sampling_obj_365d_GAM_CAI2_all_lstd_10262012.RData"))
492
sampling_date_list<-sampling_obj_cai$sampling_dat$date
493
                                    
494
date_selected<-"20100103"
495
                  
496
k<-match(date_selected,sampling_date_list)
497
                  
498
data_sf<-gam_fus[[k]]$data_s #object for the first date...20100103                  
499
data_vf<-gam_fus[[k]]$data_v #object for the first date...20100103                  
500
data_sc<-gam_fus[[k]]$data_s #object for the first date...20100103                  
501
data_vc<-gam_fus[[k]]$data_v #object for the first date...20100103                  
502

  
503
#Select background image for plotting
504
mod_pat<-glob2rx(paste("*",date_selected,"*",sep=""))   
505
image_file<-grep(mod_pat,lf_ck,value=TRUE) # using grep with "value" extracts the matching names         
506
raster_pred_k<-raster(image_file)
507
image_file<-grep(mod_pat,lf_cg,value=TRUE) # using grep with "value" extracts the matching names         
508
raster_pred_g<-raster(image_file)
509
plot(data_sf,add=TRUE)
510
plot(data_vf,pch=1,add=TRUE)
511
                  
512
#Create a residual table...
513
res_mod9_list<-vector("list",365)
514
res_mod2_list<-vector("list",365)
515
                  
516
tab_nv<-matrix(NA,365,1)
517
for(k in 1:365){
518
      tab_nv[k]<-length(fus1_c[[k]]$data_v$res_mod9)
519
}
520
#note that there might be some variation in the number!!!
521
                  
522
for(k in 1:365){
523
   res_mod9<-fus1_c[[k]]$data_v$res_mod9
524
   res_mod2<-fus1_c[[k]]$data_v$res_mod2
525
   res_mod9_list[[k]]<-res_mod9
526
   res_mod2_list[[k]]<-res_mod2
527
   #subset data frame? or rbind them...and reshape?? think about it
528
}
529
tab_resmod9<-do.call(rbind,res_mod9_list)
530
                  
531
data_v_list<-vector("list",365)
532
                  
533
for(k in 1:365){
534
      data_v<-as.data.frame(fus1_c[[k]]$data_v)
535
      data_v<-data_v[,c("id","res_mod9")]
536
      #subset data frame? or rbind them...and reshape?? think about it
537
      data_v_list[[k]]<-data_v
538
}
539
tab_resmod9<-do.call(rbind,data_v_list)
540
                  
541
#NOW USE RESHAPE TO CREATE TABLE....
542

  
543
#updated the analysis
544
                  
545
"tmax_predicted*20100103_30_1_365d_GAM_fusion_all_lstd_10242012.rst"
546
oldpath<-getwd()
547
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
548
setwd(path)
549
date_selected<-"20100103"
550
#lf_fus<-list.files(pattern=paste("GAM_bias_tmax_predicted_mod8_",date_selected,"_30_1_365d_GAM_fusion_all_lstd_10242012.rst$",sep="")) #Search for files in relation to fusion
551
file_pat<-glob2rx(paste("*tmax_pred*",date_selected,"*_365d_GAM_fusion_all_lstd_10242012.rst",sep="")) #Search for files in relation to fusion
552
lf_fus1a<-list.files(pattern=file_pat) #Search for files in relation to fusion
553
                                    
554
rast_fus1a<-stack(lf_fus1a)
555
rast_fus1a<-mask(rast_fus1a,mask_ELEV_SRTM)
556

  
557
path<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_07192012_GAM"
558
setwd(path)
559
date_selected<-"20100103"
560
#lf_fus<-list.files(pattern=paste("GAM_bias_tmax_predicted_mod8_",date_selected,"_30_1_365d_GAM_fusion_all_lstd_10242012.rst$",sep="")) #Search for files in relation to fusion
561
#lf_fus1<-list.files(pattern=paste("*.tmax_predicted.*.",date_selected,".*._365d_GAM_fusion_lstd_10062012.rst$",sep=""))                  
562
file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_fusion_lstd_10062012.rst",sep="")) #Search for files in relation to fusion
563
lf_fus1s<-list.files(pattern=file_pat) #Search for files in relation to fusion                  
564
 
565
rast_fus1s<-stack(lf_fus1s)
566
rast_fus1s<-mask(rast_fus1s,mask_ELEV_SRTM)
567
                  
568
s_range<-c(minValue(rast_fusa1),maxValue(rast_fusa1)) #stack min and max
569
s_range<-c(min(s_range),max(s_range))
570
col_breaks <- pretty(s_range, n=50)
571
lab_breaks <- pretty(s_range, n=5)
572
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
573
X11(width=18,height=12)
574
par(mfrow=c(3,3))
575
for (k in 1:length(lf_fus1a)){
576
    fus1a_r<-raster(rast_fus1a,k)
577
    plot(fus1a_r, breaks=col_breaks, col=temp_colors(length(col_breaks)-1),   
578
                axis=list(at=lab_breaks, labels=lab_breaks))
579
}
580
                  
581
#Wihtout setting range
582
s_range<-c(-12,18)
583
#col_breaks <- pretty(s_range, n=50)
584
#lab_breaks <- pretty(s_range, n=5)
585
col_breaks<-49
586
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
587
lab_breaks <- pretty(s_range, n=5)  
588
X11(width=18,height=12)
589
par(mfrow=c(3,3))
590
mod_name<-paste("mod",1:8, sep="")
591
rname<-c("FUS_kr",mod_name)
592
for (k in 1:length(lf_fus1a)){
593
    fus1a_r<-raster(rast_fus1a,k)
594
    plot(fus1a_r, breaks=col_breaks, col=temp_colors(col_breaks-1),   
595
                axis=list(at=lab_breaks, labels=lab_breaks),main=rname[k])
596
}
597
                  
598
#Wihtout setting range
599
s_range<-c(-12,23)
600
#col_breaks <- pretty(s_range, n=50)
601
#lab_breaks <- pretty(s_range, n=5)
602
col_breaks<-49
603
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
604
lab_breaks <- pretty(s_range, n=5)  
605
X11(width=18,height=12)
606
par(mfrow=c(3,3))
607
mod_name<-paste("mod",1:8, sep="")
608
rname<-c("FUS_kr",mod_name)
609
for (k in 1:length(lf_fus1s)){
610
    fus1s_r<-raster(rast_fus1s,k)
611
    plot(fus1s_r, breaks=col_breaks, col=temp_colors(col_breaks-1),   
612
                axis=list(at=lab_breaks, labels=lab_breaks),main=rname[k])
613
}
614
                  
615
                  
616
                  
617
                  

Also available in: Unified diff