Revision 2a9f3980
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 02/07/2016
|
|
8 |
#MODIFIED ON: 02/10/2016
|
|
9 | 9 |
#Version: 5 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap |
... | ... | |
179 | 179 |
|
180 | 180 |
setwd(out_dir) |
181 | 181 |
|
182 |
list_outfiles <- vector("list", length=25) #collect names of output files
|
|
183 |
list_outfiles_names <- vector("list", length=25) #collect names of output files
|
|
182 |
list_outfiles <- vector("list", length=29) #collect names of output files
|
|
183 |
list_outfiles_names <- vector("list", length=29) #collect names of output files
|
|
184 | 184 |
counter_fig <- 0 #index of figure to collect outputs |
185 | 185 |
|
186 | 186 |
#i <- year_predicted |
... | ... | |
419 | 419 |
title(paste("RMSE with scaling for all tiles: ",model_name[i],sep="")) |
420 | 420 |
dev.off() |
421 | 421 |
list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
422 |
counter_fig <- counter_fig +2 |
|
422 | 423 |
} |
423 |
counter_fig <- counter_fig + length(model_name) |
|
424 |
#counter_fig <- counter_fig + length(model_name)
|
|
424 | 425 |
r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
425 | 426 |
r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
426 | 427 |
r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
... | ... | |
429 | 430 |
################ |
430 | 431 |
### Figure 4: plot predicted tiff for specific date per model |
431 | 432 |
|
432 |
#y_var_name <-"dailyTmax" |
|
433 |
#index <-244 #index corresponding to Sept 1 |
|
434 |
|
|
435 |
# if (mosaic_plot==TRUE){ |
|
436 |
# index <- 1 #index corresponding to Jan 1 |
|
437 |
# date_selected <- "20100901" |
|
438 |
# name_method_var <- paste(interpolation_method,"_",y_var_name,"_",sep="") |
|
439 |
# |
|
440 |
# pattern_str <- paste("mosaiced","_",name_method_var,"predicted",".*.",date_selected,".*.tif",sep="") |
|
441 |
# lf_pred_list <- list.files(pattern=pattern_str) |
|
442 |
# |
|
443 |
# for(i in 1:length(lf_pred_list)){ |
|
444 |
# |
|
445 |
# |
|
446 |
# r_pred <- raster(lf_pred_list[i]) |
|
447 |
# |
|
448 |
# res_pix <- 480 |
|
449 |
# col_mfrow <- 1 |
|
450 |
# row_mfrow <- 1 |
|
451 |
# |
|
452 |
# png(filename=paste("Figure4_models_predicted_surfaces_",model_name[i],"_",name_method_var,"_",data_selected,"_",out_suffix,".png",sep=""), |
|
453 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
454 |
# |
|
455 |
# plot(r_pred) |
|
456 |
# title(paste("Mosaiced",model_name[i],name_method_var,date_selected,sep=" ")) |
|
457 |
# dev.off() |
|
458 |
# } |
|
459 |
# #Plot Delta and clim... |
|
460 |
# |
|
461 |
# ## plotting of delta and clim for later scripts... |
|
462 |
# |
|
463 |
# } |
|
433 |
for(i in 1:length(model_name)){ |
|
434 |
|
|
435 |
tb_subset <- subset(tb,pred_mod==model_name[i])#mod1 is i=1, mod_kr is last |
|
436 |
labels <- month.abb # abbreviated names for each month |
|
437 |
|
|
438 |
## Figure 4a |
|
439 |
fig_filename <- paste("Figure4a_boxplot_overall_accuracy_separated_by_month_with_outliers_",model_name[i],"_",out_suffix,".png",sep="") |
|
440 |
png(filename=fig_filename, |
|
441 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
464 | 442 |
|
443 |
boxplot(rmse~month_no,data=tb_subset,ylab=metric_name,xlab="averaged by month",axes=F)#,names=tb$pred_mod) |
|
444 |
axis(1, labels = FALSE) |
|
445 |
## Plot x axis labels at default tick marks |
|
446 |
text(1:length(labels), par("usr")[3] - 0.25, srt = 45, adj = 1,cex=0.8, |
|
447 |
labels = labels, xpd = TRUE) |
|
448 |
axis(2) |
|
449 |
box() |
|
450 |
title(paste("Overall accuracy for ", model_name[i], " by month for ",region_name,sep="")) |
|
451 |
|
|
452 |
#p<- bwplot(rmse~year_predicted | reg , data=tb_subset,ylim=c(0,5), |
|
453 |
#main="RMSE per model and region over all tiles") |
|
454 |
#print(p) |
|
455 |
dev.off() |
|
456 |
|
|
457 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
458 |
counter_fig <- counter_fig + 1 |
|
459 |
|
|
460 |
fig_filename <- paste("Figure4b_boxplot_overall_separated_by_month_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
461 |
png(filename=fig_filename, |
|
462 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
463 |
|
|
464 |
boxplot(rmse~month_no,data=tb_subset,ylim=c(0,5),outline=FALSE,ylab=metric_name, |
|
465 |
xlab="averaged by month",axes=F)#,names=tb$pred_mod) |
|
466 |
axis(1, labels = FALSE) |
|
467 |
## Plot x axis labels at default tick marks |
|
468 |
text(1:length(labels), par("usr")[3] - 0.25, srt = 45, adj = 1,cex=0.8, |
|
469 |
labels = labels, xpd = TRUE) |
|
470 |
axis(2) |
|
471 |
box() |
|
472 |
|
|
473 |
title(paste("Overall accuracy for ", model_name[i], " by month for ",region_name,sep="")) |
|
474 |
#p<- bwplot(rmse~year_predicted | reg , data=tb_subset,ylim=c(0,5), |
|
475 |
#main="RMSE per model and region over all tiles") |
|
476 |
#print(p) |
|
477 |
dev.off() |
|
478 |
|
|
479 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
480 |
counter_fig <- counter_fig + 1 |
|
481 |
} |
|
482 |
#counter_fig <- counter_fig + length(model_name) |
|
483 |
r10 <-c("figure_4a","Boxplot overall accuracy by month with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]]) |
|
484 |
r11 <-c("figure_4b","Boxplot overall accuracy by month with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[11]]) |
|
485 |
r12 <-c("figure_4a","Boxplot overall accuracy by month with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[12]]) |
|
486 |
r13 <-c("figure_4b","Boxplot overall accuracy by month with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]]) |
|
465 | 487 |
|
466 | 488 |
###################### |
467 | 489 |
### Figure 5: plot accuracy ranked |
... | ... | |
490 | 512 |
title(paste("RMSE ranked by tile for ",model_name[i],sep="")) |
491 | 513 |
|
492 | 514 |
dev.off() |
493 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
515 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
516 |
counter_fig <- counter_fig + 1 |
|
494 | 517 |
} |
495 | 518 |
|
496 |
counter_fig <- counter_fig + length(model_name) |
|
519 |
#counter_fig <- counter_fig + length(model_name)
|
|
497 | 520 |
|
498 |
r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
|
|
499 |
r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]])
|
|
521 |
r14 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]])
|
|
522 |
r15 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[15]])
|
|
500 | 523 |
|
501 | 524 |
###################### |
502 | 525 |
### Figure 6: plot map of average RMSE per tile at centroids |
... | ... | |
522 | 545 |
|
523 | 546 |
coordinates(ac_mod) <- ac_mod[,c("lon","lat")] |
524 | 547 |
#coordinates(ac_mod) <- ac_mod[,c("lon.x","lat.x")] #solve this later |
525 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
548 |
#p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
549 |
p_shp <- spplot(reg_layer,"ISO3" ,col.regions=NA, col="black") #ok problem solved!! |
|
526 | 550 |
#title("(a) Mean for 1 January") |
527 | 551 |
p <- bubble(ac_mod,"rmse",main=paste("Average RMSE per tile and by ",model_name[i])) |
528 | 552 |
p1 <- p+p_shp |
... | ... | |
535 | 559 |
### Ranking by tile... |
536 | 560 |
#df_ac_mod <- |
537 | 561 |
list_df_ac_mod[[i]] <- arrange(as.data.frame(ac_mod),desc(rmse))[,c("rmse","mae","tile_id")] |
538 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
562 |
list_outfiles[[counter_fig+1]] <- fig_filename |
|
563 |
counter_fig <- counter_fig + 1 |
|
564 |
#list_outfiles[[counter_fig+i]] <- fig_filename |
|
539 | 565 |
} |
540 |
counter_fig <- counter_fig+length(model_name) |
|
566 |
#counter_fig <- counter_fig+length(model_name)
|
|
541 | 567 |
|
542 |
r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
|
|
543 |
r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]])
|
|
568 |
r16 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]])
|
|
569 |
r17 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[17]])
|
|
544 | 570 |
|
545 | 571 |
###################### |
546 | 572 |
### Figure 7: Number of predictions: daily and monthly |
... | ... | |
580 | 606 |
|
581 | 607 |
fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
582 | 608 |
"_",out_suffix,".png",sep="") |
583 |
|
|
609 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
584 | 610 |
if(sum(summary_metrics_v_subset$n_missing) > 0){#then there are centroids to plot!!! |
585 | 611 |
|
586 | 612 |
#res_pix <- 1200 |
... | ... | |
594 | 620 |
|
595 | 621 |
model_name[j] |
596 | 622 |
|
597 |
p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
623 |
#p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
624 |
p_shp <- spplot(reg_layer,"ISO3" ,col.regions=NA, col="black") #ok problem solved!! |
|
598 | 625 |
#title("(a) Mean for 1 January") |
599 | 626 |
p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
600 | 627 |
threshold_missing_day[i])) |
... | ... | |
604 | 631 |
|
605 | 632 |
} |
606 | 633 |
|
607 |
list_outfiles[[counter_fig+i]] <- fig_filename |
|
608 | 634 |
} |
609 | 635 |
counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days... |
610 | 636 |
|
611 |
r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
|
|
612 |
r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])
|
|
613 |
r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]])
|
|
614 |
r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])
|
|
637 |
r18 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]])
|
|
638 |
r19 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]])
|
|
639 |
r20 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]])
|
|
640 |
r21 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]])
|
|
615 | 641 |
|
616 | 642 |
### Potential |
617 | 643 |
png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
... | ... | |
623 | 649 |
|
624 | 650 |
list_outfiles[[counter_fig+1]] <- paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
625 | 651 |
counter_fig <- counter_fig + 1 |
626 |
r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]])
|
|
652 |
r22 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]])
|
|
627 | 653 |
|
628 | 654 |
table(tb$pred_mod) |
629 | 655 |
table(tb$index_d) |
... | ... | |
651 | 677 |
|
652 | 678 |
list_outfiles[[counter_fig+1]] <- paste("Figure7c_histogram_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
653 | 679 |
counter_fig <- counter_fig + 1 |
654 |
r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
655 |
|
|
656 |
|
|
657 |
#table(tb) |
|
658 |
## Figure 7b |
|
659 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
|
660 |
# width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
661 |
|
|
662 |
#xyplot(n~month | tile_id + pred_mod,data=subset(as.data.frame(tb_month_s), |
|
663 |
# pred_mod!="mod_kr"),type="h") |
|
664 |
#xyplot(n~month | tile_id,data=subset(as.data.frame(tb_month_s), |
|
665 |
# pred_mod="mod_1"),type="h") |
|
666 |
#test=subset(as.data.frame(tb_month_s),pred_mod="mod_1") |
|
667 |
#table(tb_month_s$month) |
|
668 |
#dev.off() |
|
669 |
# |
|
680 |
r23 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
670 | 681 |
|
671 | 682 |
########################################################## |
672 | 683 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
... | ... | |
709 | 720 |
counter_fig <- counter_fig + 1 |
710 | 721 |
|
711 | 722 |
|
712 |
r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]])
|
|
713 |
r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]])
|
|
723 |
r24 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[24]])
|
|
724 |
r25 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[25]])
|
|
714 | 725 |
|
715 | 726 |
####### |
716 | 727 |
##Second, plot for each model separately |
... | ... | |
753 | 764 |
|
754 | 765 |
} |
755 | 766 |
|
756 |
r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]])
|
|
757 |
r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]])
|
|
758 |
r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]])
|
|
759 |
r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]])
|
|
767 |
r26 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[26]])
|
|
768 |
r27 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[27]])
|
|
769 |
r28 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[28]])
|
|
770 |
r29 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[29]])
|
|
760 | 771 |
|
761 | 772 |
##################################################### |
762 | 773 |
#### Figure 9: plotting boxplot by year and regions ########### |
... | ... | |
795 | 806 |
# This is hard coded and can be improved later on for flexibility. It works for now... |
796 | 807 |
#This data.frame contains all the files from the assessment |
797 | 808 |
|
798 |
#Should have this at the location of the figures!!! will be done later? |
|
799 |
#r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) |
|
800 |
#r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) |
|
801 |
#r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]]) |
|
802 |
#r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]]) |
|
803 |
#r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]]) |
|
804 |
#r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
805 |
#r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
806 |
#r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
807 |
#r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
808 |
#r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]]) |
|
809 |
#r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[11]]) |
|
810 |
#r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[12]]) |
|
811 |
#r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]]) |
|
812 |
#r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]]) |
|
813 |
#r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[15]]) |
|
814 |
#r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]]) |
|
815 |
#r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[17]]) |
|
816 |
#r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]]) |
|
817 |
#r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]]) |
|
818 |
#r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
819 |
#r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
820 |
#r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]]) |
|
821 |
#r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
822 |
#r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
823 |
#r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
824 |
|
|
825 | 809 |
#Assemble all the figures description and information in a data.frame for later use |
826 |
list_rows <-list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25) |
|
810 |
list_rows <-list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22, |
|
811 |
r23,r24,r25,r26,r27,r28,r29) |
|
827 | 812 |
df_assessment_figures_files <- as.data.frame(do.call(rbind,list_rows)) |
828 | 813 |
names(df_assessment_figures_files) <- c("figure_no","comment","model_name","reg","metric_name","year_predicted","filename") |
829 | 814 |
|
Also available in: Unified diff
debugging assessment part2 related to figures count and shapefile plotting