Revision 2cd02ebf
Added by Benoit Parmentier about 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part0.R | ||
---|---|---|
9 | 9 |
# |
10 | 10 |
#AUTHOR: Benoit Parmentier |
11 | 11 |
#CREATED ON: 10/27/2016 |
12 |
#MODIFIED ON: 11/10/2016
|
|
12 |
#MODIFIED ON: 11/09/2016
|
|
13 | 13 |
#Version: 1 |
14 | 14 |
#PROJECT: Environmental Layers project |
15 | 15 |
#COMMENTS: |
... | ... | |
20 | 20 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
21 | 21 |
# |
22 | 22 |
#setfacl -Rm u:aguzman4:rwx /nobackupp6/aguzman4/climateLayers/LST_tempSpline/ |
23 |
#COMMIT: modifying function generate raster of number of predictions for day with missing tiles
|
|
23 |
#COMMIT: generate raster of number of predictions for day with missing tiles |
|
24 | 24 |
|
25 | 25 |
################################################################################################# |
26 | 26 |
|
... | ... | |
520 | 520 |
#### Step 3: combine overlap information and number of predictions by day |
521 | 521 |
##Now loop through every day if missing then generate are raster showing map of number of prediction |
522 | 522 |
|
523 |
#r_tiles_stack <- stack(list_tiles_predicted_masked)
|
|
524 |
#names(r_tiles_stack) <- basename(in_dir_reg) #this does not work, X. is added to the name, use list instead
|
|
523 |
r_tiles_stack <- stack(list_tiles_predicted_masked) |
|
524 |
names(r_tiles_stack) <- basename(in_dir_reg)
|
|
525 | 525 |
|
526 |
names(list_tiles_predicted_masked) <- basename(in_dir_reg) |
|
526 |
#list_tiles_predicted_masked <- mclapply(1:length(list_tiles_predicted_m), |
|
527 |
# FUN=function(i){raster(list_tiles_predicted_m[i])}, |
|
528 |
# mc.preschedule=FALSE,mc.cores = num_cores) |
|
529 |
|
|
527 | 530 |
df_missing_tiles_day <- subset(df_missing,tot_missing > 0) |
528 |
#r_tiles_s <- r_tiles_stack |
|
529 |
names_tiles <- basename(in_dir_reg) |
|
531 |
|
|
530 | 532 |
|
531 | 533 |
generate_raster_number_of_prediction_by_day <- function(i,list_param){ |
532 | 534 |
|
533 | 535 |
list_names_tile_coord |
534 | 536 |
df_time_series |
535 | 537 |
missing_tiles <- df_missing_tiles_day[i] |
536 |
#r_tiles_s <- list_param$r_tiles_s |
|
537 |
list_param$list_tiles_predicted_masked |
|
538 |
r_tiles_s <- list_param$r_tiles_s |
|
538 | 539 |
|
539 |
#df_missing_tiles_day <- subset(df_missing,tot_missing > 0) |
|
540 | 540 |
#stack() ## all tiles for the day |
541 |
#df_missing_tiles_day[,-c("tot_missing")] |
|
542 |
df_missing_tiles_day[,!c("tot_missing")] |
|
543 |
selected_col <- names(list_tiles_predicted_masked) |
|
544 |
df_missing_tiles_day_subset <- subset(df_missing_tiles_day,select=selected_col) |
|
541 |
df_missing_tiles_day[,-c("tot_missing")] |
|
545 | 542 |
#drops <- c("x","z") |
546 | 543 |
#DF[ , !(names(DF) %in% drops)] |
547 |
selected_missing <- df_missing_tiles_day_subset[i,]==1
|
|
544 |
selected_missing <- df_missing_tiles_day[i,]==1 |
|
548 | 545 |
names(df_missing_tiles_day)[selected_missing] |
546 |
r_day_predicted <- r_overlap_m - r_stack |
|
549 | 547 |
|
550 |
#names(list_tiles_predicted_masked)[selected_missing] |
|
551 |
list_missing_tiles_raster <- list_tiles_predicted_masked[selected_missing] |
|
552 |
r_tiles_s <- stack(list_missing_tiles_raster) |
|
553 |
|
|
554 |
### first sum missing |
|
555 |
datasum <- stackApply(r_tiles_s, 1:nlayers(r_tiles_s), fun = sum) |
|
556 |
|
|
557 |
### then substract missing tiles... |
|
558 |
r_day_predicted <- r_overlap_m -datasum |
|
559 |
|
|
560 |
### generate retunr object |
|
561 | 548 |
returm(r_day_predicted) |
562 | 549 |
} |
563 | 550 |
|
Also available in: Unified diff
generate raster of number of predictions for day with missing tiles