Project

General

Profile

« Previous | Next » 

Revision 2cd02ebf

Added by Benoit Parmentier about 8 years ago

generate raster of number of predictions for day with missing tiles

View differences:

climate/research/oregon/interpolation/global_product_assessment_part0.R
9 9
#
10 10
#AUTHOR: Benoit Parmentier 
11 11
#CREATED ON: 10/27/2016  
12
#MODIFIED ON: 11/10/2016            
12
#MODIFIED ON: 11/09/2016            
13 13
#Version: 1
14 14
#PROJECT: Environmental Layers project     
15 15
#COMMENTS: 
......
20 20
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh 
21 21
#
22 22
#setfacl -Rm u:aguzman4:rwx /nobackupp6/aguzman4/climateLayers/LST_tempSpline/
23
#COMMIT: modifying function generate raster of number of predictions for day with missing tiles   
23
#COMMIT: generate raster of number of predictions for day with missing tiles   
24 24

  
25 25
#################################################################################################
26 26

  
......
520 520
  #### Step 3: combine overlap information and number of predictions by day
521 521
  ##Now loop through every day if missing then generate are raster showing map of number of prediction
522 522
  
523
  #r_tiles_stack <- stack(list_tiles_predicted_masked)
524
  #names(r_tiles_stack) <- basename(in_dir_reg) #this does not work, X. is added to the name, use list instead
523
  r_tiles_stack <- stack(list_tiles_predicted_masked)
524
  names(r_tiles_stack) <- basename(in_dir_reg)
525 525
  
526
  names(list_tiles_predicted_masked) <- basename(in_dir_reg)
526
  #list_tiles_predicted_masked <- mclapply(1:length(list_tiles_predicted_m),
527
  #         FUN=function(i){raster(list_tiles_predicted_m[i])},
528
  #                                                     mc.preschedule=FALSE,mc.cores = num_cores)                         
529

  
527 530
  df_missing_tiles_day <- subset(df_missing,tot_missing > 0)
528
  #r_tiles_s <- r_tiles_stack
529
  names_tiles <- basename(in_dir_reg)
531
  
530 532
  
531 533
  generate_raster_number_of_prediction_by_day <- function(i,list_param){
532 534
    
533 535
    list_names_tile_coord
534 536
    df_time_series
535 537
    missing_tiles <- df_missing_tiles_day[i]
536
    #r_tiles_s <- list_param$r_tiles_s
537
    list_param$list_tiles_predicted_masked
538
    r_tiles_s <- list_param$r_tiles_s
538 539
    
539
    #df_missing_tiles_day <- subset(df_missing,tot_missing > 0)
540 540
    #stack() ## all tiles for the day
541
    #df_missing_tiles_day[,-c("tot_missing")]
542
    df_missing_tiles_day[,!c("tot_missing")]
543
    selected_col <- names(list_tiles_predicted_masked)
544
    df_missing_tiles_day_subset <- subset(df_missing_tiles_day,select=selected_col)
541
    df_missing_tiles_day[,-c("tot_missing")]
545 542
    #drops <- c("x","z")
546 543
    #DF[ , !(names(DF) %in% drops)]
547
    selected_missing <- df_missing_tiles_day_subset[i,]==1
544
    selected_missing <- df_missing_tiles_day[i,]==1
548 545
    names(df_missing_tiles_day)[selected_missing]
546
    r_day_predicted <- r_overlap_m - r_stack
549 547
    
550
    #names(list_tiles_predicted_masked)[selected_missing]
551
    list_missing_tiles_raster <- list_tiles_predicted_masked[selected_missing]
552
    r_tiles_s <- stack(list_missing_tiles_raster)
553
    
554
    ### first sum missing
555
     datasum <- stackApply(r_tiles_s, 1:nlayers(r_tiles_s), fun = sum)
556
     
557
    ### then substract missing tiles...
558
    r_day_predicted <- r_overlap_m -datasum
559
    
560
    ### generate retunr object
561 548
    returm(r_day_predicted)
562 549
  }
563 550
  

Also available in: Unified diff