Revision 2df5f40f
Added by Benoit Parmentier almost 12 years ago
climate/research/oregon/interpolation/results_interpolation_date_output_analyses.R | ||
---|---|---|
4 | 4 |
#Part 1: Script produces plots for every selected date |
5 | 5 |
#Part 2: Examine |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 |
#DATE: 02/22/2013
|
|
7 |
#DATE: 03/18/2013
|
|
8 | 8 |
|
9 | 9 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#???-- |
10 | 10 |
|
... | ... | |
28 | 28 |
### Parameters and arguments |
29 | 29 |
|
30 | 30 |
##Paths to inputs and output |
31 |
#Select relevant dates and load R objects created during the interpolation step |
|
32 |
|
|
33 |
##Paths to inputs and output |
|
34 |
script_path<-"/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/" |
|
31 | 35 |
in_path <- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data/" |
32 | 36 |
out_path<- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data/" |
33 |
infile3<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
|
37 |
infile_covar<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
|
38 |
date_selected<-c("20000101") ##This is for year 2000!!! |
|
39 |
raster_prediction_obj<-"raster_prediction_obj__365d_GAM_fus5_all_lstd_03132013.RData" |
|
40 |
#out_prefix<-"_365d_GAM_fus5_all_lstd_03132013" |
|
41 |
#out_prefix<-"_365d_GAM_fus5_all_lstd_03142013" #User defined output prefix |
|
42 |
out_prefix<-"_365d_GAM_fus5_all_lstd_03132013" #User defined output prefix |
|
43 |
var<-"TMAX" |
|
44 |
#gam_fus_mod<-load_obj("gam_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
45 |
#validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
46 |
#clim_obj<-load_obj("gamclim_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
47 |
|
|
48 |
rnames<-c("x","y","lon","lat","N","E","N_w","E_w","elev","slope","aspect","CANHEIGHT","DISTOC") |
|
49 |
lc_names<-c("LC1","LC2","LC3","LC4","LC5","LC6","LC7","LC8","LC9","LC10","LC11","LC12") |
|
50 |
lst_names<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12", |
|
51 |
"nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08", |
|
52 |
"nobs_09","nobs_10","nobs_11","nobs_12") |
|
53 |
covar_names<-c(rnames,lc_names,lst_names) |
|
54 |
|
|
55 |
list_param<-list(in_path,out_path,script_path,raster_prediction_obj,infile_covar,covar_names,date_selected,var,out_prefix) |
|
56 |
names(list_param)<-c("in_path","out_path","script_path","raster_prediction_obj", |
|
57 |
"infile_covar","covar_names","date_selected","var","out_prefix") |
|
34 | 58 |
|
35 | 59 |
setwd(in_path) |
36 | 60 |
|
61 |
## make this a script that calls several function: |
|
62 |
#1) covariate script |
|
63 |
#2) plots by dates |
|
64 |
#3) number of data points monthly and daily |
|
65 |
|
|
37 | 66 |
### Functions used in the script |
38 | 67 |
|
39 | 68 |
load_obj <- function(f) |
... | ... | |
43 | 72 |
env[[nm]] |
44 | 73 |
} |
45 | 74 |
|
46 |
### PLOTTING RESULTS FROM VENEZUELA INTERPOLATION FOR ANALYSIS |
|
47 |
|
|
48 |
#Select relevant dates and load R objects created during the interpolation step |
|
49 |
|
|
50 |
date_selected<-c("20100103") |
|
51 |
|
|
52 |
gam_fus_mod<-load_obj("gam_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
53 |
validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
54 |
clim_obj<-load_obj("gamclim_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
55 |
|
|
56 |
## Read covariate stack... |
|
57 |
rnames <-c("x","y","lon","lat","N","E","N_w","E_w","elev","slope","aspect","CANHEIGHT","DISTOC") |
|
58 |
lc_names<-c("LC1","LC2","LC3","LC4","LC5","LC6","LC7","LC8","LC9","LC10","LC11","LC12") |
|
59 |
lst_names<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12", |
|
60 |
"nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08", |
|
61 |
"nobs_09","nobs_10","nobs_11","nobs_12") |
|
62 |
|
|
63 |
covar_names<-c(rnames,lc_names,lst_names) |
|
64 |
|
|
65 |
s_raster<-stack(infile3) #read in the data stack |
|
66 |
names(s_raster)<-covar_names #Assigning names to the raster layers: making sure it is included in the extraction |
|
67 |
|
|
68 |
## Figure 0: study area based on LC12 (water) mask |
|
69 |
|
|
70 |
LC_mask<-subset(s_raster,"LC12") |
|
71 |
LC_mask[LC_mask==100]<-NA |
|
72 |
LC_mask <- LC_mask < 100 |
|
73 |
LC_mask_rec<-LC_mask |
|
74 |
LC_mask_rec[is.na(LC_mask_rec)]<-0 |
|
75 |
|
|
76 |
png(paste("Study_area_", |
|
77 |
out_prefix,".png", sep="")) |
|
78 |
plot(LC_mask_rec,legend=FALSE,col=c("black","red")) |
|
79 |
legend("topright",legend=c("Outside","Inside"),title="Study area", |
|
80 |
pt.cex=0.9,fill=c("black","red"),bty="n") |
|
81 |
title("Study area") |
|
82 |
dev.off() |
|
83 |
|
|
84 |
#determine index position matching date selected |
|
75 |
extract_number_obs<-function(list_param){ |
|
76 |
|
|
77 |
method_mod_obj<-list_param$method_mod_obj |
|
78 |
#Change to results_mod_obj[[i]]$data_s to make it less specific |
|
79 |
lapply(1:length(method_obj),function(k) nrow(method_mod_obj[[k]]$data_s)) |
|
80 |
lapply(1:length(method_obj),function(k) nrow(method_mod_obj[[k]]$data_v)) |
|
81 |
lapply(1:length(clim_obj),function(k) nrow(method_mod_obj[[k]]$data_v)) |
|
82 |
return() |
|
83 |
} |
|
85 | 84 |
|
86 |
i_dates<-vector("list",length(date_selected)) |
|
87 |
for (i in 1:length(gam_fus_mod)){ |
|
85 |
### PLOTTING RESULTS FROM VENEZUELA INTERPOLATION FOR ANALYSIS |
|
86 |
#source(file.path(script_path,"results_interpolation_date_output_analyses_03182013.R")) |
|
87 |
#j=1 |
|
88 |
#plots_assessment_by_date(1,list_param) |
|
89 |
plots_assessment_by_date<-function(j,list_param){ |
|
90 |
|
|
91 |
date_selected<-list_param$date_selected |
|
92 |
var<-list_param$var |
|
93 |
#gam_fus_mod<-load_obj("gam_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
94 |
#validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
95 |
#clim_obj<-load_obj("gamclim_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
96 |
|
|
97 |
raster_prediction_obj<-load_obj(list_param$raster_prediction_obj) |
|
98 |
#method_mod_obj<-raster_prediction_obj$method_mod_obj |
|
99 |
method_mod_obj<-raster_prediction_obj$gam_fus_mod #change later for any model type |
|
100 |
#validation_obj<-raster_prediction_obj$validation_obj |
|
101 |
validation_obj<-raster_prediction_obj$gam_fus_validation_mod #change later for any model type |
|
102 |
#clim_obj<-raster_prediction_obj$clim_obj |
|
103 |
clim_obj<-raster_prediction_obj$gamclim_fus_mod #change later for any model type |
|
104 |
|
|
105 |
if (var=="TMAX"){ |
|
106 |
y_var_name<-"dailyTmax" |
|
107 |
} |
|
108 |
if (var=="TMIN"){ |
|
109 |
y_var_name<-"dailyTmin" |
|
110 |
} |
|
111 |
|
|
112 |
## Read covariate stack... |
|
113 |
covar_names<-list_param$covar_names |
|
114 |
s_raster<-brick(infile_covar) #read in the data stack |
|
115 |
names(s_raster)<-covar_names #Assigning names to the raster layers: making sure it is included in the extraction |
|
116 |
|
|
117 |
## Figure 0: study area based on LC12 (water) mask |
|
118 |
|
|
119 |
LC_mask<-subset(s_raster,"LC12") |
|
120 |
LC_mask[LC_mask==100]<-NA |
|
121 |
LC_mask <- LC_mask < 100 |
|
122 |
LC_mask_rec<-LC_mask |
|
123 |
LC_mask_rec[is.na(LC_mask_rec)]<-0 |
|
124 |
|
|
125 |
#Add proportion covered by study area+ total of image pixels |
|
126 |
tmp_tb<-freq(LC_mask_rec) |
|
127 |
tmp_tb[2,2]/sum(tmp_tb[,2])*100 |
|
128 |
png(paste("Study_area_", |
|
129 |
out_prefix,".png", sep="")) |
|
130 |
plot(LC_mask_rec,legend=FALSE,col=c("black","red")) |
|
131 |
legend("topright",legend=c("Outside","Inside"),title="Study area", |
|
132 |
pt.cex=0.9,fill=c("black","red"),bty="n") |
|
133 |
title("Study area") |
|
134 |
dev.off() |
|
135 |
|
|
136 |
#determine index position matching date selected |
|
137 |
|
|
88 | 138 |
for (j in 1:length(date_selected)){ |
89 |
if(gam_fus_mod[[i]]$sampling_dat$date==date_selected[j]){ |
|
90 |
i_dates[[j]]<-i |
|
139 |
for (i in 1:length(method_mod_obj)){ |
|
140 |
if(method_mod_obj[[i]]$sampling_dat$date==date_selected[j]){ |
|
141 |
i_dates[[j]]<-i |
|
142 |
} |
|
91 | 143 |
} |
92 | 144 |
} |
145 |
#Examine the first select date add loop or function later |
|
146 |
#j=1 |
|
147 |
date<-strptime(date_selected[j], "%Y%m%d") # interpolation date being processed |
|
148 |
month<-strftime(date, "%m") # current month of the date being processed |
|
149 |
|
|
150 |
#Get raster stack of interpolated surfaces |
|
151 |
index<-i_dates[[j]] |
|
152 |
pred_temp<-as.character(method_mod_obj[[index]]$dailyTmax) #list of files |
|
153 |
rast_pred_temp<-stack(pred_temp) #stack of temperature predictions from models |
|
154 |
|
|
155 |
#Get validation metrics, daily spdf training and testing stations, monthly spdf station input |
|
156 |
sampling_dat<-method_mod_obj[[index]]$sampling_dat |
|
157 |
metrics_v<-validation_obj[[index]]$metrics_v |
|
158 |
metrics_s<-validation_obj[[index]]$metrics_s |
|
159 |
data_v<-validation_obj[[index]]$data_v |
|
160 |
data_s<-validation_obj[[index]]$data_s |
|
161 |
data_month<-clim_obj[[index]]$data_month |
|
162 |
formulas<-clim_obj[[index]]$formulas |
|
163 |
|
|
164 |
#Adding layer LST to the raster stack of covariates |
|
165 |
#The names of covariates can be changed... |
|
166 |
|
|
167 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
168 |
pos<-match("LST",layerNames(s_raster)) #Find the position of the layer with name "LST", if not present pos=NA |
|
169 |
s_raster<-dropLayer(s_raster,pos) # If it exists drop layer |
|
170 |
pos<-match(LST_month,layerNames(s_raster)) #Find column with the current month for instance mm12 |
|
171 |
r1<-raster(s_raster,layer=pos) #Select layer from stack |
|
172 |
layerNames(r1)<-"LST" |
|
173 |
#Get mask image!! |
|
174 |
|
|
175 |
date_proc<-strptime(sampling_dat$date, "%Y%m%d") # interpolation date being processed |
|
176 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
177 |
day<-as.integer(strftime(date_proc, "%d")) |
|
178 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
179 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
180 |
|
|
181 |
## Figure 1: LST_TMax_scatterplot |
|
182 |
|
|
183 |
rmse<-metrics_v$rmse[nrow(metrics_v)] |
|
184 |
rmse_f<-metrics_s$rmse[nrow(metrics_s)] |
|
185 |
|
|
186 |
png(paste("LST_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
187 |
out_prefix,".png", sep="")) |
|
188 |
plot(data_month$TMax,data_month$LST,xlab="Station mo Tmax",ylab="LST mo Tmax") |
|
189 |
title(paste("LST vs TMax for",datelabel,sep=" ")) |
|
190 |
abline(0,1) |
|
191 |
nb_point<-paste("n=",length(data_month$TMax),sep="") |
|
192 |
mean_bias<-paste("Mean LST bias= ",format(mean(data_month$LSTD_bias,na.rm=TRUE),digits=3),sep="") |
|
193 |
#Add the number of data points on the plot |
|
194 |
legend("topleft",legend=c(mean_bias,nb_point),bty="n") |
|
195 |
dev.off() |
|
196 |
|
|
197 |
## Figure 2: Daily_tmax_monthly_TMax_scatterplot, modify for TMin!! |
|
198 |
|
|
199 |
png(paste("Daily_tmax_monthly_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
200 |
out_prefix,".png", sep="")) |
|
201 |
plot(dailyTmax~TMax,data=data_s,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in VE") |
|
202 |
nb_point<-paste("ns=",length(data_s$TMax),sep="") |
|
203 |
nb_point2<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
204 |
nb_point3<-paste("n_month=",length(data_month$TMax),sep="") |
|
205 |
#Add the number of data points on the plot |
|
206 |
legend("topleft",legend=c(nb_point,nb_point2,nb_point3),bty="n",cex=0.8) |
|
207 |
dev.off() |
|
208 |
|
|
209 |
## Figure 3: Predicted_tmax_versus_observed_scatterplot |
|
210 |
|
|
211 |
#This is for mod_kr!! add other models later... |
|
212 |
png(paste("Predicted_tmax_versus_observed_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
213 |
out_prefix,".png", sep="")) |
|
214 |
#plot(data_s$mod_kr~data_s[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
215 |
|
|
216 |
y_range<-range(c(data_s$mod_kr,data_v$mod_kr),na.rm=T) |
|
217 |
x_range<-range(c(data_s[[y_var_name]],data_v[[y_var_name]]),na.rm=T) |
|
218 |
col_t<- c("black","red") |
|
219 |
pch_t<- c(1,2) |
|
220 |
plot(data_s$mod_kr,data_s[[y_var_name]], |
|
221 |
xlab=paste("Actual daily for",datelabel),ylab="Pred daily", |
|
222 |
ylim=y_range,xlim=x_range,col=col_t[1],pch=pch_t[1]) |
|
223 |
points(data_v$mod_kr,data_v[[y_var_name]],col=col_t[2],pch=pch_t[2]) |
|
224 |
grid(lwd=0.5, col="black") |
|
225 |
#plot(data_v$mod_kr~data_v[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
226 |
abline(0,1) |
|
227 |
legend("topleft",legend=c("training","testing"),pch=pch_t,col=col_t,bty="n",cex=0.8) |
|
228 |
title(paste("Predicted_tmax_versus_observed_scatterplot for",datelabel,sep=" ")) |
|
229 |
nb_point1<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
230 |
rmse_str1<-paste("RMSE= ",format(rmse,digits=3),sep="") |
|
231 |
rmse_str2<-paste("RMSE_f= ",format(rmse_f,digits=3),sep="") |
|
232 |
|
|
233 |
#Add the number of data points on the plot |
|
234 |
legend("bottomright",legend=c(nb_point1,rmse_str1,rmse_str2),bty="n",cex=0.8) |
|
235 |
dev.off() |
|
236 |
|
|
237 |
## Figure 5: prediction raster images |
|
238 |
png(paste("Raster_prediction_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
239 |
out_prefix,".png", sep="")) |
|
240 |
#paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
241 |
names(rast_pred_temp)<-paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
242 |
#plot(rast_pred_temp) |
|
243 |
levelplot(rast_pred_temp) |
|
244 |
dev.off() |
|
245 |
|
|
246 |
## Figure 5b: prediction raster images |
|
247 |
png(paste("Raster_prediction_plot",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
248 |
out_prefix,".png", sep="")) |
|
249 |
#paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
250 |
names(rast_pred_temp)<-paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
251 |
#plot(rast_pred_temp) |
|
252 |
plot(rast_pred_temp) |
|
253 |
dev.off() |
|
254 |
|
|
255 |
## Figure 6: training and testing stations used |
|
256 |
png(paste("Training_testing_stations_map_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
257 |
out_prefix,".png", sep="")) |
|
258 |
plot(raster(rast_pred_temp,layer=5)) |
|
259 |
plot(data_s,col="black",cex=1.2,pch=2,add=TRUE) |
|
260 |
plot(data_v,col="red",cex=1.2,pch=1,add=TRUE) |
|
261 |
legend("topleft",legend=c("training stations", "testing stations"), |
|
262 |
cex=1, col=c("black","red"), |
|
263 |
pch=c(2,1),bty="n") |
|
264 |
dev.off() |
|
265 |
|
|
266 |
## Figure 7: monthly stations used |
|
267 |
|
|
268 |
png(paste("Monthly_data_study_area", |
|
269 |
out_prefix,".png", sep="")) |
|
270 |
plot(raster(rast_pred_temp,layer=5)) |
|
271 |
plot(data_month,col="black",cex=1.2,pch=4,add=TRUE) |
|
272 |
title("Monthly ghcn station in Venezuela for January") |
|
273 |
dev.off() |
|
274 |
|
|
275 |
## Figure 8: delta surface and bias |
|
276 |
|
|
277 |
png(paste("Bias_delta_surface_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
278 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
|
279 |
|
|
280 |
bias_rast<-stack(clim_obj[[index]]$bias) |
|
281 |
delta_rast<-raster(method_mod_obj[[index]]$delta) #only one delta image!!! |
|
282 |
names(delta_rast)<-"delta" |
|
283 |
rast_temp_date<-stack(bias_rast,delta_rast) |
|
284 |
rast_temp_date<-mask(rast_temp_date,LC_mask,file="test.tif",overwrite=TRUE) |
|
285 |
#bias_d_rast<-raster("fusion_bias_LST_20100103_30_1_10d_GAM_fus5_all_lstd_02082013.rst") |
|
286 |
plot(rast_temp_date) |
|
287 |
|
|
288 |
dev.off() |
|
289 |
|
|
290 |
#Figure 9: histogram for all images... |
|
291 |
|
|
292 |
#histogram(rast_pred_temp) |
|
293 |
list_output_analyses<-list(metrics_s,metrics_v) |
|
294 |
return(list_output_analyses) |
|
295 |
|
|
93 | 296 |
} |
94 | 297 |
|
95 |
#Examine the first select date add loop or function later |
|
96 |
j=1 |
|
97 |
|
|
98 |
date<-strptime(date_selected[j], "%Y%m%d") # interpolation date being processed |
|
99 |
month<-strftime(date, "%m") # current month of the date being processed |
|
100 |
|
|
101 |
#Get raster stack of interpolated surfaces |
|
102 |
index<-i_dates[[j]] |
|
103 |
pred_temp<-as.character(gam_fus_mod[[index]]$dailyTmax) #list of files |
|
104 |
rast_pred_temp<-stack(pred_temp) #stack of temperature predictions from models |
|
105 |
|
|
106 |
#Get validation metrics, daily spdf training and testing stations, monthly spdf station input |
|
107 |
sampling_dat<-gam_fus_mod[[index]]$sampling_dat |
|
108 |
metrics_v<-validation_obj[[index]]$metrics_v |
|
109 |
metrics_s<-validation_obj[[index]]$metrics_s |
|
110 |
data_v<-validation_obj[[index]]$data_v |
|
111 |
data_s<-validation_obj[[index]]$data_s |
|
112 |
data_month<-clim_obj[[index]]$data_month |
|
113 |
formulas<-clim_obj[[index]]$formulas |
|
114 |
|
|
115 |
#Adding layer LST to the raster stack of covariates |
|
116 |
#The names of covariates can be changed... |
|
117 |
|
|
118 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
119 |
pos<-match("LST",layerNames(s_raster)) #Find the position of the layer with name "LST", if not present pos=NA |
|
120 |
s_raster<-dropLayer(s_raster,pos) # If it exists drop layer |
|
121 |
pos<-match(LST_month,layerNames(s_raster)) #Find column with the current month for instance mm12 |
|
122 |
r1<-raster(s_raster,layer=pos) #Select layer from stack |
|
123 |
layerNames(r1)<-"LST" |
|
124 |
#Get mask image!! |
|
125 |
|
|
126 |
date_proc<-strptime(sampling_dat$date, "%Y%m%d") # interpolation date being processed |
|
127 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
128 |
day<-as.integer(strftime(date_proc, "%d")) |
|
129 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
130 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
131 |
|
|
132 |
## Figure 1: LST_TMax_scatterplot |
|
133 |
|
|
134 |
rmse<-metrics_v$rmse[nrow(metrics_v)] |
|
135 |
rmse_f<-metrics_s$rmse[nrow(metrics_s)] |
|
136 |
|
|
137 |
png(paste("LST_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
138 |
out_prefix,".png", sep="")) |
|
139 |
plot(data_month$TMax,data_month$LST,xlab="Station mo Tmax",ylab="LST mo Tmax") |
|
140 |
title(paste("LST vs TMax for",datelabel,sep=" ")) |
|
141 |
abline(0,1) |
|
142 |
nb_point<-paste("n=",length(data_month$TMax),sep="") |
|
143 |
mean_bias<-paste("Mean LST bias= ",format(mean(data_month$LSTD_bias,na.rm=TRUE),digits=3),sep="") |
|
144 |
#Add the number of data points on the plot |
|
145 |
legend("topleft",legend=c(mean_bias,nb_point),bty="n") |
|
146 |
dev.off() |
|
147 |
|
|
148 |
## Figure 2: Daily_tmax_monthly_TMax_scatterplot |
|
149 |
|
|
150 |
png(paste("Daily_tmax_monthly_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
151 |
out_prefix,".png", sep="")) |
|
152 |
plot(dailyTmax~TMax,data=data_s,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in VE") |
|
153 |
nb_point<-paste("ns=",length(data_s$TMax),sep="") |
|
154 |
nb_point2<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
155 |
nb_point3<-paste("n_month=",length(data_month$TMax),sep="") |
|
156 |
#Add the number of data points on the plot |
|
157 |
legend("topleft",legend=c(nb_point,nb_point2,nb_point3),bty="n",cex=0.8) |
|
158 |
dev.off() |
|
159 |
|
|
160 |
## Figure 3: Predicted_tmax_versus_observed_scatterplot |
|
161 |
|
|
162 |
#This is for mod_kr!! add other models later... |
|
163 |
png(paste("Predicted_tmax_versus_observed_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
164 |
out_prefix,".png", sep="")) |
|
165 |
#plot(data_s$mod_kr~data_s[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
166 |
|
|
167 |
y_range<-range(c(data_s$mod_kr,data_v$mod_kr),na.rm=T) |
|
168 |
x_range<-range(c(data_s[[y_var_name]],data_v[[y_var_name]]),na.rm=T) |
|
169 |
col_t<- c("black","red") |
|
170 |
pch_t<- c(1,2) |
|
171 |
plot(data_s$mod_kr,data_s[[y_var_name]], |
|
172 |
xlab=paste("Actual daily for",datelabel),ylab="Pred daily", |
|
173 |
ylim=y_range,xlim=x_range,col=col_t[1],pch=pch_t[1]) |
|
174 |
points(data_v$mod_kr,data_v[[y_var_name]],col=col_t[2],pch=pch_t[2]) |
|
175 |
grid(lwd=0.5, col="black") |
|
176 |
#plot(data_v$mod_kr~data_v[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
177 |
abline(0,1) |
|
178 |
legend("topleft",legend=c("training","testing"),pch=pch_t,col=col_t,bty="n",cex=0.8) |
|
179 |
title(paste("Predicted_tmax_versus_observed_scatterplot for",datelabel,sep=" ")) |
|
180 |
nb_point1<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
181 |
rmse_str1<-paste("RMSE= ",format(rmse,digits=3),sep="") |
|
182 |
rmse_str2<-paste("RMSE_f= ",format(rmse_f,digits=3),sep="") |
|
183 |
|
|
184 |
#Add the number of data points on the plot |
|
185 |
legend("bottomright",legend=c(nb_point1,rmse_str1,rmse_str2),bty="n",cex=0.8) |
|
186 |
dev.off() |
|
187 |
|
|
188 |
## Figure 5: prediction raster images |
|
189 |
png(paste("Raster_prediction_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
190 |
out_prefix,".png", sep="")) |
|
191 |
#paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
192 |
names(rast_pred_temp)<-paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
193 |
#plot(rast_pred_temp) |
|
194 |
levelplot(rast_pred_temp) |
|
195 |
dev.off() |
|
196 |
|
|
197 |
## Figure 6: training and testing stations used |
|
198 |
png(paste("Training_testing_stations_map_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
199 |
out_prefix,".png", sep="")) |
|
200 |
plot(raster(rast_pred_temp,layer=5)) |
|
201 |
plot(data_s,col="black",cex=1.2,pch=2,add=TRUE) |
|
202 |
plot(data_v,col="red",cex=1.2,pch=1,add=TRUE) |
|
203 |
legend("topleft",legend=c("training stations", "testing stations"), |
|
204 |
cex=1, col=c("black","red"), |
|
205 |
pch=c(2,1),bty="n") |
|
206 |
dev.off() |
|
207 |
|
|
208 |
## Figure 7: monthly stations used |
|
209 |
|
|
210 |
png(paste("Monthly_data_study_area", |
|
211 |
out_prefix,".png", sep="")) |
|
212 |
plot(raster(rast_pred_temp,layer=5)) |
|
213 |
plot(data_month,col="black",cex=1.2,pch=4,add=TRUE) |
|
214 |
title("Monthly ghcn station in Venezuela for January") |
|
215 |
dev.off() |
|
216 |
|
|
217 |
## Figure 8: delta surface and bias |
|
218 |
|
|
219 |
png(paste("Bias_delta_surface_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
220 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
|
221 |
|
|
222 |
bias_rast<-stack(clim_obj[[index]]$bias) |
|
223 |
delta_rast<-raster(gam_fus_mod[[index]]$delta) #only one delta image!!! |
|
224 |
names(delta_rast)<-"delta" |
|
225 |
rast_temp_date<-stack(bias_rast,delta_rast) |
|
226 |
rast_temp_date<-mask(rast_temp_date,LC_mask,file="test.tif",overwrite=TRUE) |
|
227 |
#bias_d_rast<-raster("fusion_bias_LST_20100103_30_1_10d_GAM_fus5_all_lstd_02082013.rst") |
|
228 |
plot(rast_temp_date) |
|
229 |
|
|
230 |
dev.off() |
|
231 |
|
|
232 |
#Figure 9: histogram for all images... |
|
233 | 298 |
|
234 |
histogram(rast_pred_temp) |
|
235 | 299 |
|
236 | 300 |
## Summarize information for the day: write out textfile... |
237 | 301 |
|
Also available in: Unified diff
Output analyses and assessment of results, turning script into function