Revision 31651cbb
Added by Benoit Parmentier over 8 years ago
climate/research/oregon/interpolation/global_run_scalingup_mosaicing.R | ||
---|---|---|
1 |
############################## INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
####################### Script for assessment of scaling up on NEX ############################## |
|
1 |
#################################### INTERPOLATION OF TEMPERATURES #######################################
|
|
2 |
####################### Script for assessment of scaling up and mosaicing on NEX ##############################
|
|
3 | 3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
4 | 4 |
#Different options to explore mosaicing are tested. |
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 04/14/2015 |
8 |
#MODIFIED ON: 04/05/2016
|
|
9 |
#Version: 5
|
|
8 |
#MODIFIED ON: 04/07/2016
|
|
9 |
#Version: 6
|
|
10 | 10 |
#PROJECT: Environmental Layers project |
11 |
#COMMENTS: analyses run for reg4 1992 for test of mosaicing using 1500x4500km and other tiles
|
|
11 |
#COMMENTS: analyses run for reg4 1991 for test of mosaicing using 1500x4500km and other tiles
|
|
12 | 12 |
#TODO: |
13 | 13 |
#1) Make this is a script/function callable from the shell/bash |
14 | 14 |
#2) clean up temporary files, it builds currently on the disk |
... | ... | |
37 | 37 |
|
38 | 38 |
#### FUNCTION USED IN SCRIPT |
39 | 39 |
|
40 |
# function_mosaicing <-"global_run_scalingup_mosaicing_function_12192015.R" |
|
41 |
# |
|
42 |
# #in_dir_script <-"/home/parmentier/Data/IPLANT_project/env_layers_scripts" #NCEAS UCSB |
|
43 |
# in_dir_script <- "/nobackupp8/bparmen1/env_layers_scripts" #NASA NEX |
|
44 |
# source(file.path(in_dir_script,function_mosaicing)) |
|
45 |
# |
|
46 |
# load_obj <- function(f) |
|
47 |
# { |
|
48 |
# env <- new.env() |
|
49 |
# nm <- load(f, env)[1] |
|
50 |
# env[[nm]] |
|
51 |
# } |
|
52 |
# |
|
53 |
# create_dir_fun <- function(out_dir,out_suffix){ |
|
54 |
# if(!is.null(out_suffix)){ |
|
55 |
# out_name <- paste("output_",out_suffix,sep="") |
|
56 |
# out_dir <- file.path(out_dir,out_name) |
|
57 |
# } |
|
58 |
# #create if does not exists |
|
59 |
# if(!file.exists(out_dir)){ |
|
60 |
# dir.create(out_dir) |
|
61 |
# } |
|
62 |
# return(out_dir) |
|
63 |
# } |
|
64 | 40 |
|
65 | 41 |
############################################ |
66 | 42 |
#### Parameters and constants |
67 | 43 |
|
68 |
#Data is on ATLAS or NASA NEX |
|
69 |
#PARAM 1 |
|
70 |
# in_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NCEAS |
|
71 |
# #in_dir <- "/nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_12072015" #NEX |
|
72 |
# |
|
73 |
# in_dir_tiles <- file.path(in_dir,"tiles") #this is valid both for Atlas and NEX |
|
74 |
# y_var_name <- "dailyTmax" #PARAM2 |
|
75 |
# interpolation_method <- c("gam_CAI") #PARAM3 |
|
76 |
# region_name <- "reg4" #PARAM 4 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3 |
|
77 |
# mosaicing_method <- c("unweighted","use_edge_weights") #PARAM5 |
|
78 |
# out_suffix <- paste(region_name,"_","run10_1500x4500_global_analyses_pred_1992_12072015",sep="") #PARAM 6 |
|
79 |
# out_suffix_str <- "run10_1500x4500_global_analyses_pred_1992_12072015" #PARAM 7 |
|
80 |
# metric_name <- "rmse" #RMSE, MAE etc. #PARAM 8 |
|
81 |
# pred_mod_name <- "mod1" #PARAM 9 |
|
82 |
# var_pred <- "res_mod1" #used in residuals mapping #PARAM 10 |
|
83 |
# |
|
84 |
# out_dir <- in_dir #PARAM 11 |
|
85 |
# create_out_dir_param <- FALSE #PARAM 12 |
|
86 |
# |
|
87 |
# #if daily mosaics NULL then mosaicas all days of the year #PARAM 13 |
|
88 |
# day_to_mosaic <- c("19920101","19920102","19920103") #,"19920104","19920105") #PARAM9, two dates note in /tiles for now on NEX |
|
89 |
# |
|
90 |
# #CRS_WGS84 <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1 |
|
91 |
# #CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
92 |
# #proj_str<- CRS_WGS84 #PARAM 8 #check this parameter |
|
93 |
# |
|
94 |
# file_format <- ".tif" #PARAM 14 |
|
95 |
# NA_value <- -9999 #PARAM 15 |
|
96 |
# NA_flag_val <- NA_value #PARAM 16 |
|
97 |
# |
|
98 |
# num_cores <- 6 #PARAM 17 |
|
99 |
# region_names <- c("reg23","reg4") #selected region names, ##PARAM 18 |
|
100 |
# use_autokrige <- F #PARAM 19 |
|
101 |
# |
|
102 |
# ###Separate folder for masks by regions, should be listed as just the dir!!... #PARAM 20 |
|
103 |
# #infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
104 |
# infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_reg4.tif" |
|
105 |
# ## All of this is interesting so use df_assessment!! |
|
106 |
# df_assessment_files_name <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" # data.frame with all files used in assessmnet, PARAM 21 |
|
107 |
# |
|
108 |
# #in_dir can be on NEX or Atlas |
|
109 |
# |
|
110 |
# #python script and gdal on NEX NASA: |
|
111 |
# #mosaic_python <- "/nobackupp6/aguzman4/climateLayers/sharedCode/" |
|
112 |
# #python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" |
|
113 |
# #python script and gdal on Atlas NCEAS |
|
114 |
# mosaic_python <- "/data/project/layers/commons/NEX_data/sharedCode" #PARAM 26 |
|
115 |
# python_bin <- "/usr/bin" #PARAM 27 |
|
116 |
# |
|
117 |
# algorithm <- "python" #PARAM 28 #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
118 |
# #algorithm <- "R" #if R use mosaic function for R, if python use modified gdalmerge script from Alberto Guzmann |
|
119 |
# match_extent <- "FALSE" #PARAM 29 #try without matching!!! |
|
120 |
# |
|
121 |
# #for residuals... |
|
122 |
# list_models <- NULL #PARAM 30 |
|
123 |
# #list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default... |
|
124 |
# |
|
125 |
# list_param_run_mosaicing_prediction <- list(in_dir,y_var_name,interpolation_method,region_name, |
|
126 |
# mosaicing_method,out_suffix,out_suffix_str,metric_name,pred_mod_name,var_pred, |
|
127 |
# create_out_dir_param,day_to_mosaic,proj_str,file_format,NA_value,num_cores, |
|
128 |
# region_name,use_autokrige,infile_mask,df_assessment_files_name,mosaic_python, |
|
129 |
# python_bin,algorithm,match_extent,list_models) |
|
130 |
# param_names <- c("in_dir","y_var_name","interpolation_method","region_name", |
|
131 |
# "mosaicing_method","out_suffix","out_suffix_str","metric_name","pred_mod_name","var_pred", |
|
132 |
# "create_out_dir_param","day_to_mosaic","proj_str","file_format","NA_value","num_cores", |
|
133 |
# "region_name","use_autokrige","infile_mask","df_assessment_files_name","mosaic_python", |
|
134 |
# "python_bin","algorithm","match_extent","list_models") |
|
135 |
# names(list_param_run_mosaicing_prediction) <- param_names |
|
136 | 44 |
|
137 | 45 |
########################## START SCRIPT ############################## |
138 | 46 |
|
... | ... | |
257 | 165 |
#for residuals... |
258 | 166 |
list_models <- list_param_run_mosaicing_prediction$list_models # NULL #PARAM 26 |
259 | 167 |
#list_models <- paste(var_pred,"~","1",sep=" ") #if null then this is the default... |
168 |
layers_option <- list_param_run_mosaicing_prediction$layers_option |
|
260 | 169 |
|
261 | 170 |
####### PART 1: Read in data and process data ######## |
262 | 171 |
|
... | ... | |
340 | 249 |
################### PART I: Accuracy layers by tiles ############# |
341 | 250 |
#first generate accuracy layers using tiles definitions and output from the accuracy assessment |
342 | 251 |
|
343 |
#tb <- list_param$tb #fitting or validation table with all days |
|
344 |
#metric_name <- "rmse" #RMSE, MAE etc. |
|
345 |
#pred_mod_name <- "mod1" |
|
346 |
#y_var_name |
|
347 |
#interpolation_method #c("gam_CAI") #PARAM3 |
|
348 |
days_to_process <- day_to_mosaic |
|
349 |
#NA_flag_val <- list_param$NA_flag_val |
|
350 |
#file_format <- list_param$file_format |
|
351 |
out_dir_str <- out_dir |
|
352 |
out_suffix_str <- out_suffix |
|
353 |
lf <- lf_mosaic |
|
354 |
|
|
355 |
#Improved by adding multicores option |
|
356 |
num_cores_tmp <- num_cores |
|
357 |
list_param_accuracy_metric_raster <- list(lf,tb,metric_name,pred_mod_name,y_var_name,interpolation_method, |
|
252 |
if(layers_option=="ac_testing"){ |
|
253 |
#this takes about 1 minute and 35 seconds for 3 days and 28 tiles... |
|
254 |
#add options to clean up file after use!! |
|
255 |
#tb <- list_param$tb #fitting or validation table with all days |
|
256 |
#metric_name <- "rmse" #RMSE, MAE etc. |
|
257 |
#pred_mod_name <- "mod1" |
|
258 |
#y_var_name |
|
259 |
#interpolation_method #c("gam_CAI") #PARAM3 |
|
260 |
days_to_process <- day_to_mosaic |
|
261 |
#NA_flag_val <- list_param$NA_flag_val |
|
262 |
#file_format <- list_param$file_format |
|
263 |
out_dir_str <- out_dir |
|
264 |
out_suffix_str <- out_suffix |
|
265 |
lf <- lf_mosaic |
|
266 |
|
|
267 |
#Improved by adding multicores option |
|
268 |
num_cores_tmp <- num_cores |
|
269 |
list_param_accuracy_metric_raster <- list(lf,tb,metric_name,pred_mod_name,y_var_name,interpolation_method, |
|
358 | 270 |
days_to_process,num_cores_tmp,NA_flag_val,file_format,out_dir_str,out_suffix_str) |
359 |
names(list_param_accuracy_metric_raster) <- c("lf","tb","metric_name","pred_mod_name","y_var_name","interpolation_method", |
|
271 |
names(list_param_accuracy_metric_raster) <- c("lf","tb","metric_name","pred_mod_name","y_var_name","interpolation_method",
|
|
360 | 272 |
"days_to_process","num_cores","NA_flag_val","file_format","out_dir_str","out_suffix_str") |
361 |
list_raster_created_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_metric_raster, |
|
273 |
list_raster_created_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_metric_raster,
|
|
362 | 274 |
list_param=list_param_accuracy_metric_raster) |
363 | 275 |
|
364 |
#debug(create_accuracy_metric_raster) |
|
365 |
#list_raster_created_obj <- lapply(1:1,FUN=create_accuracy_metric_raster, |
|
366 |
# list_param=list_param_accuracy_metric_raster) |
|
367 |
#raster_created_obj <- create_accuracy_metric_raster(1, list_param_accuracy_metric_raster) |
|
276 |
#debug(create_accuracy_metric_raster)
|
|
277 |
#list_raster_created_obj <- lapply(1:1,FUN=create_accuracy_metric_raster,
|
|
278 |
# list_param=list_param_accuracy_metric_raster)
|
|
279 |
#raster_created_obj <- create_accuracy_metric_raster(1, list_param_accuracy_metric_raster)
|
|
368 | 280 |
|
369 |
#Extract list of files for rmse and date 1 (19920101), there should be 28 raster images |
|
370 |
lf_accuracy_raster <- lapply(1:length(list_raster_created_obj),FUN=function(i){unlist(list_raster_created_obj[[i]]$list_raster_name)}) |
|
281 |
#Extract list of files for rmse and date 1 (19920101), there should be 28 raster images
|
|
282 |
lf_accuracy_raster <- lapply(1:length(list_raster_created_obj),FUN=function(i){unlist(list_raster_created_obj[[i]]$list_raster_name)})
|
|
371 | 283 |
|
372 |
#Plot as quick check |
|
373 |
#r1 <- raster(lf_mosaic[[1]][1]) |
|
374 |
#plot(r1) |
|
375 |
#browser() |
|
284 |
#Plot as quick check |
|
285 |
#r1 <- raster(lf_mosaic[[1]][1]) |
|
286 |
#plot(r1) |
|
287 |
#browser() |
|
288 |
|
|
289 |
} |
|
376 | 290 |
|
377 | 291 |
#################################### |
378 | 292 |
### Now create accuracy surfaces from residuals... |
379 | 293 |
|
380 |
## Create accuracy surface by kriging |
|
381 |
|
|
382 |
num_cores_tmp <-num_cores |
|
383 |
lf_day_tiles <- lf_mosaic #list of raster files by dates |
|
384 |
data_df <- data_day_v # data.frame table/spdf containing stations with residuals and variable |
|
385 |
#df_tile_processed #tiles processed during assessment usually by region |
|
386 |
#var_pred #variable being modeled |
|
387 |
#if not list of models is provided generate one |
|
388 |
if(is.null(list_models)){ |
|
389 |
list_models <- paste(var_pred,"~","1",sep=" ") |
|
390 |
} |
|
294 |
if(layers_option=="res_testing"){ |
|
295 |
|
|
296 |
## Create accuracy surface by kriging |
|
297 |
num_cores_tmp <-num_cores |
|
298 |
lf_day_tiles <- lf_mosaic #list of raster files by dates |
|
299 |
data_df <- data_day_v # data.frame table/spdf containing stations with residuals and variable |
|
300 |
#df_tile_processed #tiles processed during assessment usually by region |
|
301 |
#var_pred #variable being modeled |
|
302 |
#if not list of models is provided generate one |
|
303 |
if(is.null(list_models)){ |
|
304 |
list_models <- paste(var_pred,"~","1",sep=" ") |
|
305 |
} |
|
391 | 306 |
|
392 |
#use_autokrige #if TRUE use automap/gstat package |
|
393 |
#y_var_name #"dailyTmax" #PARAM2 |
|
394 |
#interpolation_method #c("gam_CAI") #PARAM3, need to select reg!! |
|
395 |
#date_processed #can be a monthly layer |
|
396 |
#num_cores #number of cores used |
|
397 |
#NA_flag_val |
|
398 |
#file_format |
|
399 |
out_dir_str <- out_dir |
|
400 |
#out_suffix_str <- out_suffix |
|
401 |
days_to_process <- day_to_mosaic |
|
402 |
out_suffix_str <- paste("data_day_v_",out_suffix,sep="") |
|
403 |
|
|
404 |
#browser() |
|
405 |
df_tile_processed$path_NEX <- as.character(df_tile_processed$path_NEX) |
|
406 |
df_tile_processed$reg <- basename(dirname(df_tile_processed$path_NEX)) |
|
407 |
|
|
408 |
##By regions, selected earlier |
|
409 |
#for(k in 1:length(region_names)){ |
|
410 |
df_tile_processed_reg <- subset(df_tile_processed,reg==region_selected)#use reg4 |
|
411 |
#i<-1 #loop by days/date to process!! |
|
412 |
#test on the first day |
|
413 |
list_param_create_accuracy_residuals_raster <- list(lf_day_tiles,data_df,df_tile_processed_reg, |
|
307 |
#use_autokrige #if TRUE use automap/gstat package |
|
308 |
#y_var_name #"dailyTmax" #PARAM2 |
|
309 |
#interpolation_method #c("gam_CAI") #PARAM3, need to select reg!! |
|
310 |
#date_processed #can be a monthly layer |
|
311 |
#num_cores #number of cores used |
|
312 |
#NA_flag_val |
|
313 |
#file_format |
|
314 |
out_dir_str <- out_dir #change to specific separate dir?? |
|
315 |
#out_suffix_str <- out_suffix |
|
316 |
days_to_process <- day_to_mosaic |
|
317 |
out_suffix_str <- paste("data_day_v_",out_suffix,sep="") |
|
318 |
#browser() |
|
319 |
df_tile_processed$path_NEX <- as.character(df_tile_processed$path_NEX) |
|
320 |
df_tile_processed$reg <- basename(dirname(df_tile_processed$path_NEX)) |
|
321 |
|
|
322 |
##By regions, selected earlier |
|
323 |
#for(k in 1:length(region_names)){ |
|
324 |
df_tile_processed_reg <- subset(df_tile_processed,reg==region_selected)#use reg4 |
|
325 |
#i<-1 #loop by days/date to process!! |
|
326 |
#test on the first day |
|
327 |
list_param_create_accuracy_residuals_raster <- list(lf_day_tiles,data_df,df_tile_processed_reg, |
|
414 | 328 |
var_pred,list_models,use_autokrige,y_var_name,interpolation_method, |
415 | 329 |
days_to_process,num_cores_tmp,NA_flag_val,file_format,out_dir_str, |
416 | 330 |
out_suffix_str) |
417 |
names(list_param_create_accuracy_residuals_raster) <- c("lf_day_tiles","data_df","df_tile_processed_reg", |
|
331 |
names(list_param_create_accuracy_residuals_raster) <- c("lf_day_tiles","data_df","df_tile_processed_reg",
|
|
418 | 332 |
"var_pred","list_models","use_autokrige","y_var_name","interpolation_method", |
419 | 333 |
"days_to_process","num_cores_tmp","NA_flag_val","file_format","out_dir_str", |
420 | 334 |
"out_suffix_str") |
421 |
#browser() |
|
422 |
list_create_accuracy_residuals_raster_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_residuals_raster, |
|
335 |
#browser()
|
|
336 |
list_create_accuracy_residuals_raster_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_residuals_raster,
|
|
423 | 337 |
list_param=list_param_create_accuracy_residuals_raster) |
424 | 338 |
|
425 |
#undebug(create_accuracy_residuals_raster) |
|
426 |
#list_create_accuracy_residuals_raster_obj <- lapply(1:1,FUN=create_accuracy_residuals_raster, |
|
427 |
# list_param=list_param_create_accuracy_residuals_raster) |
|
339 |
#undebug(create_accuracy_residuals_raster)
|
|
340 |
#list_create_accuracy_residuals_raster_obj <- lapply(1:1,FUN=create_accuracy_residuals_raster,
|
|
341 |
# list_param=list_param_create_accuracy_residuals_raster)
|
|
428 | 342 |
|
429 |
#create_accuracy_residuals_raster_obj <- create_accuracy_residuals_raster(1, list_param_create_accuracy_residuals_raster_obj) |
|
343 |
#create_accuracy_residuals_raster_obj <- create_accuracy_residuals_raster(1, list_param_create_accuracy_residuals_raster_obj)
|
|
430 | 344 |
|
431 |
#note that three tiles did not produce a residuals surface!!! find out more later, join the output |
|
432 |
#to df_raste_tile to keep track of which one did not work... |
|
433 |
#lf_accuracy_residuals_raster <- as.character(unlist(lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name"))},x=list_create_accuracy_residuals_raster_obj))) |
|
434 |
lf_accuracy_residuals_raster <- lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){as.character(unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name")))},x=list_create_accuracy_residuals_raster_obj) |
|
345 |
#note that three tiles did not produce a residuals surface!!! find out more later, join the output
|
|
346 |
#to df_raste_tile to keep track of which one did not work...
|
|
347 |
#lf_accuracy_residuals_raster <- as.character(unlist(lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name"))},x=list_create_accuracy_residuals_raster_obj)))
|
|
348 |
lf_accuracy_residuals_raster <- lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){as.character(unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name")))},x=list_create_accuracy_residuals_raster_obj)
|
|
435 | 349 |
|
436 |
#Plot as quick check |
|
437 |
#r1 <- raster(lf_mosaic[[1]][1]) |
|
438 |
#list_create_accuracy_residuals_raster_obj |
|
439 |
#browser() |
|
350 |
#Plot as quick check |
|
351 |
#r1 <- raster(lf_mosaic[[1]][1]) |
|
352 |
#list_create_accuracy_residuals_raster_obj |
|
353 |
#browser() |
|
354 |
} |
|
440 | 355 |
|
441 | 356 |
######################################### |
442 | 357 |
##Run for data_day_s |
443 | 358 |
## |
444 |
data_df <- data_day_s # data.frame table/spdf containing stations with residuals and variable |
|
445 |
|
|
446 |
num_cores_tmp <-num_cores |
|
447 |
lf_day_tiles <- lf_mosaic #list of raster files by dates |
|
448 |
#data_df <- data_day_v # data.frame table/spdf containing stations with residuals and variable |
|
449 |
#df_tile_processed #tiles processed during assessment usually by region |
|
450 |
#var_pred #variable being modeled |
|
451 |
#if not list of models is provided generate one |
|
452 |
if(is.null(list_models)){ |
|
453 |
list_models <- paste(var_pred,"~","1",sep=" ") |
|
454 |
} |
|
359 |
|
|
360 |
if(layers_option=="res_testing"){ |
|
361 |
|
|
362 |
data_df <- data_day_s # data.frame table/spdf containing stations with residuals and variable |
|
363 |
|
|
364 |
num_cores_tmp <-num_cores |
|
365 |
lf_day_tiles <- lf_mosaic #list of raster files by dates |
|
366 |
#data_df <- data_day_v # data.frame table/spdf containing stations with residuals and variable |
|
367 |
#df_tile_processed #tiles processed during assessment usually by region |
|
368 |
#var_pred #variable being modeled |
|
369 |
#if not list of models is provided generate one |
|
370 |
if(is.null(list_models)){ |
|
371 |
list_models <- paste(var_pred,"~","1",sep=" ") |
|
372 |
} |
|
455 | 373 |
|
456 |
#use_autokrige #if TRUE use automap/gstat package |
|
457 |
#y_var_name #"dailyTmax" #PARAM2 |
|
458 |
#interpolation_method #c("gam_CAI") #PARAM3, need to select reg!! |
|
459 |
#date_processed #can be a monthly layer |
|
460 |
#num_cores #number of cores used |
|
461 |
#NA_flag_val |
|
462 |
#file_format |
|
463 |
out_dir_str <- out_dir |
|
464 |
out_suffix_str <- paste("data_day_s_",out_suffix,sep="") |
|
465 |
days_to_process <- day_to_mosaic |
|
466 |
df_tile_processed$path_NEX <- as.character(df_tile_processed$path_NEX) |
|
467 |
df_tile_processed$reg <- basename(dirname(df_tile_processed$path_NEX)) |
|
468 |
|
|
469 |
##By regions, selected earlier |
|
470 |
#for(k in 1:length(region_names)){ |
|
471 |
df_tile_processed_reg <- subset(df_tile_processed,reg==region_selected)#use reg4 |
|
472 |
#i<-1 #loop by days/date to process!! |
|
473 |
#test on the first day |
|
474 |
list_param_create_accuracy_residuals_raster <- list(lf_day_tiles,data_df,df_tile_processed_reg, |
|
374 |
#use_autokrige #if TRUE use automap/gstat package
|
|
375 |
#y_var_name #"dailyTmax" #PARAM2
|
|
376 |
#interpolation_method #c("gam_CAI") #PARAM3, need to select reg!!
|
|
377 |
#date_processed #can be a monthly layer
|
|
378 |
#num_cores #number of cores used
|
|
379 |
#NA_flag_val
|
|
380 |
#file_format
|
|
381 |
out_dir_str <- out_dir
|
|
382 |
out_suffix_str <- paste("data_day_s_",out_suffix,sep="")
|
|
383 |
days_to_process <- day_to_mosaic
|
|
384 |
df_tile_processed$path_NEX <- as.character(df_tile_processed$path_NEX)
|
|
385 |
df_tile_processed$reg <- basename(dirname(df_tile_processed$path_NEX))
|
|
386 |
|
|
387 |
##By regions, selected earlier
|
|
388 |
#for(k in 1:length(region_names)){
|
|
389 |
df_tile_processed_reg <- subset(df_tile_processed,reg==region_selected)#use reg4
|
|
390 |
#i<-1 #loop by days/date to process!!
|
|
391 |
#test on the first day
|
|
392 |
list_param_create_accuracy_residuals_raster <- list(lf_day_tiles,data_df,df_tile_processed_reg,
|
|
475 | 393 |
var_pred,list_models,use_autokrige,y_var_name,interpolation_method, |
476 | 394 |
days_to_process,num_cores_tmp,NA_flag_val,file_format,out_dir_str, |
477 | 395 |
out_suffix_str) |
478 |
names(list_param_create_accuracy_residuals_raster) <- c("lf_day_tiles","data_df","df_tile_processed_reg", |
|
396 |
names(list_param_create_accuracy_residuals_raster) <- c("lf_day_tiles","data_df","df_tile_processed_reg",
|
|
479 | 397 |
"var_pred","list_models","use_autokrige","y_var_name","interpolation_method", |
480 | 398 |
"days_to_process","num_cores_tmp","NA_flag_val","file_format","out_dir_str", |
481 | 399 |
"out_suffix_str") |
482 |
browser()
|
|
483 |
list_create_accuracy_residuals_raster_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_residuals_raster, |
|
400 |
#browser() #21 minutes and 40 second to get here
|
|
401 |
list_create_accuracy_residuals_raster_obj <- lapply(1:length(day_to_mosaic),FUN=create_accuracy_residuals_raster,
|
|
484 | 402 |
list_param=list_param_create_accuracy_residuals_raster) |
485 | 403 |
|
486 |
#undebug(create_accuracy_residuals_raster) |
|
487 |
#list_create_accuracy_residuals_raster_obj <- lapply(1:1,FUN=create_accuracy_residuals_raster, |
|
488 |
# list_param=list_param_create_accuracy_residuals_raster) |
|
404 |
#undebug(create_accuracy_residuals_raster)
|
|
405 |
#list_create_accuracy_residuals_raster_obj <- lapply(1:1,FUN=create_accuracy_residuals_raster,
|
|
406 |
# list_param=list_param_create_accuracy_residuals_raster)
|
|
489 | 407 |
|
490 |
#create_accuracy_residuals_raster_obj <- create_accuracy_metric_raster(1, list_param_create_accuracy_residuals_raster_obj) |
|
408 |
#create_accuracy_residuals_raster_obj <- create_accuracy_metric_raster(1, list_param_create_accuracy_residuals_raster_obj)
|
|
491 | 409 |
|
492 |
#note that three tiles did not produce a residuals surface!!! find out more later, join the output |
|
493 |
#to df_raste_tile to keep track of which one did not work... |
|
494 |
#lf_accuracy_residuals_raster <- as.character(unlist(lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name"))},x=list_create_accuracy_residuals_raster_obj))) |
|
495 |
lf_accuracy_residuals_data_s_raster <- lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){as.character(unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name")))},x=list_create_accuracy_residuals_raster_obj) |
|
410 |
#note that three tiles did not produce a residuals surface!!! find out more later, join the output
|
|
411 |
#to df_raste_tile to keep track of which one did not work...
|
|
412 |
#lf_accuracy_residuals_raster <- as.character(unlist(lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name"))},x=list_create_accuracy_residuals_raster_obj)))
|
|
413 |
lf_accuracy_residuals_data_s_raster <- lapply(1:length(list_create_accuracy_residuals_raster_obj),FUN=function(i,x){as.character(unlist(extract_from_list_obj(x[[i]]$list_pred_res_obj,"raster_name")))},x=list_create_accuracy_residuals_raster_obj)
|
|
496 | 414 |
|
415 |
} |
|
497 | 416 |
##took 31 minutes to generate the residuals maps for each tiles (28) for region 4 |
498 |
|
|
417 |
##Revised on 04/07 for three dates, it took 40 minutes |
|
418 |
|
|
499 | 419 |
###################################################### |
500 | 420 |
#### PART 2: GENERATE MOSAIC FOR LIST OF FILES ##### |
501 | 421 |
################################# |
... | ... | |
528 | 448 |
file_format=file_format, |
529 | 449 |
out_suffix=out_suffix_tmp, |
530 | 450 |
out_dir=out_dir) |
531 |
|
|
451 |
#runs in 15-16 minutes for 3 dates and mosaicing of 28 tiles... |
|
452 |
|
|
453 |
## Now accuracy based on center of centroids |
|
532 | 454 |
mosaic_method <- "use_edge_weights" #this is distance from edge |
455 |
#Adding metric name in the name... |
|
533 | 456 |
out_suffix_tmp <- paste(interpolation_method,metric_name,day_to_mosaic[i],out_suffix,sep="_") |
534 | 457 |
|
535 | 458 |
#debug(mosaicFiles) |
... | ... | |
546 | 469 |
file_format=file_format, |
547 | 470 |
out_suffix=out_suffix_tmp, |
548 | 471 |
out_dir=out_dir) |
549 |
|
|
472 |
##Took 39 minutes for 28 tiles and one date...!!! |
|
550 | 473 |
list_mosaic_obj[[i]] <- list(prediction=mosaic_edge_obj_prediction,accuracy=mosaic_edge_obj_accuracy) |
551 | 474 |
|
552 | 475 |
### produce residuals mosaics |
... | ... | |
570 | 493 |
file_format=file_format, |
571 | 494 |
out_suffix=out_suffix_tmp, |
572 | 495 |
out_dir=out_dir) |
573 |
|
|
496 |
#Took 11 to 12 minues for one day and 28 tiles in region 4 |
|
574 | 497 |
list_mosaic_obj[[i]] <- list(prediction=mosaic_edge_obj_prediction,accuracy=mosaic_edge_obj_accuracy,mosaic_edge_obj_residuals) |
575 | 498 |
#} |
576 | 499 |
|
Also available in: Unified diff
mosaicing script, adding options to run accuracy layers, variable predicted and other options