Revision 31dd40b6
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/master_script_temp.R | ||
---|---|---|
10 | 10 |
#STAGE 5: Output analyses: assessment of results for specific dates... |
11 | 11 |
# |
12 | 12 |
#AUTHOR: Benoit Parmentier |
13 |
#DATE: 09/04/2013
|
|
13 |
#DATE: 09/01/2013
|
|
14 | 14 |
|
15 | 15 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#363, TASK$568-- |
16 | 16 |
|
... | ... | |
58 | 58 |
#source(file.path(script_path,"download_and_produce_MODIS_LST_climatology_06112013.R")) |
59 | 59 |
source(file.path(script_path,"covariates_production_temperatures_08052013.R")) |
60 | 60 |
source(file.path(script_path,"Database_stations_covariates_processing_function_06112013.R")) |
61 |
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_09012013.R"))
|
|
61 |
source(file.path(script_path,"GAM_fusion_analysis_raster_prediction_multisampling_09042013.R"))
|
|
62 | 62 |
source(file.path(script_path,"results_interpolation_date_output_analyses_08052013.R")) |
63 | 63 |
#source(file.path(script_path,"results_covariates_database_stations_output_analyses_04012013.R")) #to be completed |
64 | 64 |
|
65 | 65 |
#FUNCTIONS CALLED FROM GAM ANALYSIS RASTER PREDICTION ARE FOUND IN... |
66 | 66 |
|
67 | 67 |
source(file.path(script_path,"sampling_script_functions_08252013.R")) |
68 |
source(file.path(script_path,"GAM_fusion_function_multisampling_08302013.R")) #Include GAM_CAI
|
|
68 |
source(file.path(script_path,"GAM_fusion_function_multisampling_09042013.R")) #Includes Fusion and CAI methods
|
|
69 | 69 |
source(file.path(script_path,"interpolation_method_day_function_multisampling_07052013.R")) #Include GAM_day |
70 | 70 |
source(file.path(script_path,"GAM_fusion_function_multisampling_validation_metrics_09012013.R")) |
71 | 71 |
|
... | ... | |
80 | 80 |
#met_stations_outfiles_obj_file<-"met_stations_outfiles_obj_gam_CAI__365d_gam_CAI_lst_comb3_08252013.RData" |
81 | 81 |
|
82 | 82 |
var<-"TMAX" # variable being interpolated |
83 |
out_prefix<-"_365d_kriging_CAI_lst_comb3_09042013" #User defined output prefix
|
|
84 |
out_suffix<-"_OR_09042013" #Regional suffix
|
|
83 |
out_prefix<-"_365d_gam_fus_lst_comb3_09032013" #User defined output prefix
|
|
84 |
out_suffix<-"_OR_09032013" #Regional suffix
|
|
85 | 85 |
out_suffix_modis <-"_05302013" #pattern to find tiles produced previously |
86 | 86 |
|
87 | 87 |
#interpolation_method<-c("gam_fusion","gam_CAI","gam_daily") #other otpions to be added later |
88 | 88 |
#interpolation_method<-c("gam_CAI") #other otpions to be added later |
89 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later
|
|
89 |
interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
90 | 90 |
#interpolation_method<-c("kriging_fusion") #other otpions to be added later |
91 | 91 |
#interpolation_method<-c("gwr_fusion") #other otpions to be added later |
92 | 92 |
#interpolation_method<-c("gwr_CAI") #other otpions to be added later |
93 |
interpolation_method <- c("kriging_CAI")
|
|
93 |
#interpolation_method<-c("kriging_CAI")
|
|
94 | 94 |
|
95 | 95 |
#interpolation_method<-c("gam_daily") #other otpions to be added later |
96 | 96 |
#interpolation_method<-c("kriging_daily") #other otpions to be added later |
... | ... | |
253 | 253 |
nb_sample_month <-1 #number of time random sampling must be repeated for every hold out proportion |
254 | 254 |
step_month <-0.1 |
255 | 255 |
constant_month <-0 #if value 1 then use the same samples as date one for the all set of dates |
256 |
prop_minmax_month <-c(0,0.7) #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
|
|
256 |
prop_minmax_month <-c(0,0.1) #if prop_min=prop_max and step=0 then predictions are done for the number of dates...
|
|
257 | 257 |
|
258 | 258 |
#dates_selected<-c("20100101","20100102","20100103","20100901") # Note that the dates set must have a specific format: yyymmdd |
259 | 259 |
#dates_selected<-c("20100101","20100102","20100301","20100302","20100501","20100502","20100701","20100702","20100901","20100902","20101101","20101102") |
... | ... | |
266 | 266 |
#LC1: Evergreen/deciduous needleleaf trees |
267 | 267 |
|
268 | 268 |
#Combination 3: for paper baseline=s(lat,lon)+s(elev) |
269 |
#list_models<-c("y_var ~ s(lat,lon) + s(elev_s)",
|
|
270 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(N_w)",
|
|
271 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(E_w)",
|
|
272 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST)",
|
|
273 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)",
|
|
274 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LC1)",
|
|
275 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)",
|
|
276 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)",
|
|
277 |
# "y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)")
|
|
269 |
list_models<-c("y_var ~ s(lat,lon) + s(elev_s)", |
|
270 |
"y_var ~ s(lat,lon) + s(elev_s) + s(N_w)", |
|
271 |
"y_var ~ s(lat,lon) + s(elev_s) + s(E_w)", |
|
272 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST)", |
|
273 |
"y_var ~ s(lat,lon) + s(elev_s) + s(DISTOC)", |
|
274 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LC1)", |
|
275 |
"y_var ~ s(lat,lon) + s(elev_s) + s(CANHGHT)", |
|
276 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,LC1)", |
|
277 |
"y_var ~ s(lat,lon) + s(elev_s) + s(LST) + ti(LST,CANHGHT)") |
|
278 | 278 |
|
279 | 279 |
#Combination 4: for paper baseline=s(lat,lon) |
280 | 280 |
# list_models<-c("y_var ~ s(lat,lon)", |
... | ... | |
292 | 292 |
|
293 | 293 |
#list_models<-c("y_var ~ s(lat,lon) + s(elev_s)") |
294 | 294 |
|
295 |
list_models<-c("y_var ~ lat*lon + elev_s", |
|
296 |
"y_var ~ lat*lon + elev_s + N_w", |
|
297 |
"y_var ~ lat*lon + elev_s + E_w", |
|
298 |
"y_var ~ lat*lon + elev_s + LST", |
|
299 |
"y_var ~ lat*lon + elev_s + DISTOC", |
|
300 |
"y_var ~ lat*lon + elev_s + LC1", |
|
301 |
"y_var ~ lat*lon + elev_s + CANHGHT", |
|
302 |
"y_var ~ lat*lon + elev_s + LST + I(LST*LC1)", |
|
303 |
"y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)") |
|
295 |
# list_models<-c("y_var ~ lat*lon + elev_s",
|
|
296 |
# "y_var ~ lat*lon + elev_s + N_w",
|
|
297 |
# "y_var ~ lat*lon + elev_s + E_w",
|
|
298 |
# "y_var ~ lat*lon + elev_s + LST",
|
|
299 |
# "y_var ~ lat*lon + elev_s + DISTOC",
|
|
300 |
# "y_var ~ lat*lon + elev_s + LC1",
|
|
301 |
# "y_var ~ lat*lon + elev_s + CANHGHT",
|
|
302 |
# "y_var ~ lat*lon + elev_s + LST + I(LST*LC1)",
|
|
303 |
# "y_var ~ lat*lon + elev_s + LST + I(LST*CANHGHT)")
|
|
304 | 304 |
|
305 | 305 |
#Default name of LST avg to be matched |
306 | 306 |
lst_avg<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12") |
... | ... | |
317 | 317 |
"list_models","lst_avg","out_path","script_path","use_clim_image","join_daily", |
318 | 318 |
"interpolation_method") |
319 | 319 |
|
320 |
#debug(raster_prediction_fun)
|
|
320 |
debug(raster_prediction_fun) |
|
321 | 321 |
raster_prediction_obj <-raster_prediction_fun(list_param_raster_prediction) |
322 | 322 |
|
323 | 323 |
############## STAGE 5: OUTPUT ANALYSES ################## |
Also available in: Unified diff
testing and debugging gam fusion with monthly holdout proportion