Revision 32ad4597
Added by Benoit Parmentier over 11 years ago
climate/research/oregon/interpolation/land_cover_elev_diff.R | ||
---|---|---|
1 |
##################################### METHODS COMPARISON part 5 ########################################## |
|
2 |
#################################### Spatial Analysis ############################################ |
|
3 |
#This script utilizes the R ojbects created during the interpolation phase. # |
|
4 |
#This scripts focuses on a detailed study of differences in the predictions of CAI_kr and FUsion_Kr |
|
5 |
#Differences are examined through: |
|
6 |
#1) per land cover classes |
|
7 |
#2) per elevation classes |
|
8 |
#3) through spiatial transects |
|
9 |
# |
|
10 |
#Note this code is for exploratory analyses so some sections are not succinct and |
|
11 |
#can be improve for repeatability and clarity. |
|
12 |
#AUTHOR: Benoit Parmentier # |
|
13 |
#DATE: 12/04/2012 # |
|
14 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491 -- # |
|
15 |
################################################################################################### |
|
16 |
|
|
17 |
###Loading R library and packages |
|
18 |
library(gtools) # loading some useful tools such as mixedsort |
|
19 |
library(mgcv) # GAM package by Wood 2006 (version 2012) |
|
20 |
library(sp) # Spatial pacakge with class definition by Bivand et al. 2008 |
|
21 |
library(spdep) # Spatial package with methods and spatial stat. by Bivand et al. 2012 |
|
22 |
library(rgdal) # GDAL wrapper for R, spatial utilities (Keitt et al. 2012) |
|
23 |
library(gstat) # Kriging and co-kriging by Pebesma et al. 2004 |
|
24 |
library(automap) # Automated Kriging based on gstat module by Hiemstra et al. 2008 |
|
25 |
library(spgwr) |
|
26 |
library(gpclib) |
|
27 |
library(maptools) |
|
28 |
library(graphics) |
|
29 |
library(parallel) # Urbanek S. and Ripley B., package for multi cores & parralel processing |
|
30 |
library(raster) |
|
31 |
library(rasterVis) |
|
32 |
library(plotrix) #Draw circle on graph |
|
33 |
library(reshape) |
|
34 |
######### Functions used in the script |
|
35 |
#loading R objects that might have similar names |
|
36 |
load_obj <- function(f) |
|
37 |
{ |
|
38 |
env <- new.env() |
|
39 |
nm <- load(f, env)[1] |
|
40 |
env[[nm]] |
|
41 |
} |
|
42 |
|
|
43 |
plot_transect<-function(list_trans,r_stack,title_plot,disp=TRUE){ |
|
44 |
#This function creates plot of transects for stack of raster images. |
|
45 |
#The parameters are: |
|
46 |
#list_trans: list of files containing the transects lines in shapefile format |
|
47 |
#r_stack: raster stack of files |
|
48 |
#title_plot: plot title |
|
49 |
#disp: dispaly and save from X11 if TRUE |
|
50 |
nb<-length(list_trans) |
|
51 |
t_col<-rainbow(nb) |
|
52 |
list_trans_data<-vector("list",nb) |
|
53 |
for (i in 1:nb){ |
|
54 |
trans_file<-list_trans[[i]][1] |
|
55 |
filename<-sub(".shp","",trans_file) #Removing the extension from file. |
|
56 |
transect<-readOGR(".", filename) #reading shapefile |
|
57 |
trans_data<-extract(r_stack, transect) |
|
58 |
if (disp==FALSE){ |
|
59 |
png(file=paste(list_trans[[i]]),".png",sep="") |
|
60 |
} |
|
61 |
for (k in 1:ncol(trans_data[[1]])){ |
|
62 |
y<-trans_data[[1]][,k] |
|
63 |
x<-1:length(y) |
|
64 |
if (k!=1){ |
|
65 |
lines(x,y,col=t_col[k]) |
|
66 |
} |
|
67 |
if (k==1){ |
|
68 |
plot(x,y,type="l",xlab="Position index", ylab="temperature",col=rainbow(k)) |
|
69 |
} |
|
70 |
} |
|
71 |
title(title_plot[i]) |
|
72 |
legend("topright",legend=layerNames(r_stack), |
|
73 |
cex=1.2, col=t_col, |
|
74 |
lty=1) |
|
75 |
|
|
76 |
if (disp==TRUE){ |
|
77 |
savePlot(file=paste(list_trans[[i]][2],".png",sep=""),type="png") |
|
78 |
} |
|
79 |
if (disp==FALSE){ |
|
80 |
dev.off() |
|
81 |
} |
|
82 |
list_trans_data[[i]]<-trans_data |
|
83 |
} |
|
84 |
names(list_trans_data)<-names(list_trans) |
|
85 |
return(list_trans_data) |
|
86 |
} |
|
87 |
|
|
88 |
plot_transect_m<-function(list_trans,r_stack,title_plot,disp=TRUE,m_layers){ |
|
89 |
#This function creates plot of transects for stack of raster images. |
|
90 |
#Arguments: |
|
91 |
#list_trans: list of files containing the transects lines in shapefile format |
|
92 |
#r_stack: raster stack containing the information to extect |
|
93 |
#title_plot: plot title |
|
94 |
#disp: display and save from X11 if TRUE or plot to png file if FALSE |
|
95 |
#m_layers: index for layerers containing alternate units to be drawned on a differnt scale |
|
96 |
#RETURN: |
|
97 |
#list containing transect information |
|
98 |
|
|
99 |
nb<-length(list_trans) |
|
100 |
t_col<-rainbow(nb) |
|
101 |
list_trans_data<-vector("list",nb) |
|
102 |
|
|
103 |
#For scale 1 |
|
104 |
for (i in 1:nb){ |
|
105 |
trans_file<-list_trans[[i]][1] |
|
106 |
filename<-sub(".shp","",trans_file) #Removing the extension from file. |
|
107 |
transect<-readOGR(".", filename) #reading shapefile |
|
108 |
trans_data<-extract(r_stack, transect) |
|
109 |
if (disp==FALSE){ |
|
110 |
png(file=paste(list_trans[[i]]),".png",sep="") |
|
111 |
} |
|
112 |
#Plot layer values for specific transect |
|
113 |
for (k in 1:ncol(trans_data[[1]])){ |
|
114 |
y<-trans_data[[1]][,k] |
|
115 |
x<-1:length(y) |
|
116 |
m<-match(k,m_layers) |
|
117 |
|
|
118 |
if (k==1 & is.na(m)){ |
|
119 |
plot(x,y,type="l",xlab="Position index", ylab="temperature",col=t_col[k]) |
|
120 |
axis(2,xlab="",ylab="tmax (in degree C)") |
|
121 |
} |
|
122 |
if (k==1 & !is.na(m)){ |
|
123 |
plot(x,y,type="l",col=t_col[k],axes=F) #plotting fusion profile |
|
124 |
axis(4,xlab="",ylab="tmax (in degree C)") |
|
125 |
|
|
126 |
} |
|
127 |
if (k!=1 & is.na(m)){ |
|
128 |
#par(new=TRUE) # new plot without erasing old |
|
129 |
lines(x,y,type="l",col=t_col[k],axes=F) #plotting fusion profile |
|
130 |
#axis(2,xlab="",ylab="tmax (in degree C)") |
|
131 |
} |
|
132 |
if (k!=1 & !is.na(m)){ |
|
133 |
par(new=TRUE) # key: ask for new plot without erasing old |
|
134 |
plot(x,y,type="l",col=t_col[k],axes=F) #plotting fusion profile |
|
135 |
#axis(4,xlab="",ylab="tmax (in degree C)") |
|
136 |
} |
|
137 |
|
|
138 |
} |
|
139 |
title(title_plot[i]) |
|
140 |
legend("topright",legend=layerNames(r_stack), |
|
141 |
cex=1.2, col=t_col, |
|
142 |
lty=1) |
|
143 |
|
|
144 |
if (disp==TRUE){ |
|
145 |
savePlot(file=paste(list_trans[[i]][2],".png",sep=""),type="png") |
|
146 |
} |
|
147 |
if (disp==FALSE){ |
|
148 |
dev.off() |
|
149 |
} |
|
150 |
list_trans_data[[i]]<-trans_data |
|
151 |
} |
|
152 |
names(list_trans_data)<-names(list_trans) |
|
153 |
return(list_trans_data) |
|
154 |
} |
|
155 |
|
|
156 |
transect_from_spdf<-function (spdf,selected_features){ |
|
157 |
#This function produces a transect from a set of selected points in a point layer |
|
158 |
# Arguments: |
|
159 |
# spdf: SpatialPointDataFrame |
|
160 |
# selected_features: index of ssubset points used in the transect line |
|
161 |
# Return: SpatialLinesDataframe object corresponding to the transect |
|
162 |
# Author: Benoit Parmentier |
|
163 |
# Date: 11-29-2012 |
|
164 |
|
|
165 |
dat_id<-spdf[selected_features,] #creating new subset from spdf |
|
166 |
spdf_proj<-proj4string(dat_id) |
|
167 |
matrix_point_coords<-coordinates(dat_id) |
|
168 |
#Add possibility of keeping attributes? |
|
169 |
#Transform a sequence of points with coords into Spatial Lines |
|
170 |
#Note that X is the ID, modify for dataframe? |
|
171 |
trans4<-SpatialLines(list(Lines(list(Line(coordinates(matrix_point_coords))),"X"))) |
|
172 |
tmp<-as.data.frame(dat_id[1,]) |
|
173 |
row.names(tmp)<-rep("X",1) |
|
174 |
trans4<-SpatialLinesDataFrame(trans4,data=tmp) |
|
175 |
proj4string(trans4)<-spdf_proj |
|
176 |
return(trans4) |
|
177 |
} |
|
178 |
|
|
179 |
###Parameters and arguments |
|
180 |
|
|
181 |
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp" #GHCN shapefile containing variables for modeling 2010 |
|
182 |
#infile2<-"list_10_dates_04212012.txt" #List of 10 dates for the regression |
|
183 |
infile2<-"list_365_dates_04212012.txt" #list of dates |
|
184 |
infile3<-"LST_dates_var_names.txt" #LST dates name |
|
185 |
infile4<-"models_interpolation_05142012.txt" #Interpolation model names |
|
186 |
infile5<-"mean_day244_rescaled.rst" #mean LST for day 244 |
|
187 |
inlistf<-"list_files_05032012.txt" #list of raster images containing the Covariates |
|
188 |
infile6<-"OR83M_state_outline.shp" |
|
189 |
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE) |
|
190 |
|
|
191 |
out_prefix<-"methods_comp5_12142012_" |
|
192 |
nb_transect<-4 |
|
193 |
##### LOAD USEFUL DATA |
|
194 |
|
|
195 |
#obj_list<-"list_obj_08262012.txt" #Results of fusion from the run on ATLAS |
|
196 |
path_wd<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging #Jupiter Location on XANDERS |
|
197 |
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/" #Local dropbox folder on Benoit's laptop |
|
198 |
setwd(path_wd) |
|
199 |
path_data_cai<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI" #Change to constant |
|
200 |
path_data_fus<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM" |
|
201 |
#list files that contain model objects and ratingin-testing information for CAI and Fusion |
|
202 |
obj_mod_fus_name<-"results_mod_obj__365d_GAM_fusion_const_all_lstd_11022012.RData" |
|
203 |
#obj_mod_cai_name<-"results_mod_obj__365d_GAM_CAI2_const_all_10312012.RData" |
|
204 |
obj_mod_cai_name<-"results_mod_obj__365d_GAM_CAI3_const_all_12072012.RData" |
|
205 |
gam_cai_mod<-load_obj(file.path(path_data_cai,obj_mod_cai_name)) |
|
206 |
lf_raster_cai<-"*_365d_GAM_CAI3_const_all_12072012.rst" |
|
207 |
lf_raster_fus<-"*_365d_GAM_fusion_const_all_lstd_11022012.rst" |
|
208 |
|
|
209 |
gam_fus<-load_obj(file.path(path_data_fus,obj_mod_fus_name)) |
|
210 |
gam_cai<-load_obj(file.path(path_data_cai,obj_mod_cai_name)) #This contains all the info |
|
211 |
sampling_date_list<-gam_fus$sampling_obj$sampling_dat$date |
|
212 |
|
|
213 |
### Projection for the current region |
|
214 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
215 |
#User defined output prefix |
|
216 |
|
|
217 |
### MAKE THIS A FUNCTION TO LOAD STACK AND DEFINE VALID RANGE... |
|
218 |
#CRS<-proj4string(ghcn) #Storing projection information (ellipsoid, datum,etc.) |
|
219 |
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="") #Column 1 contains the names of raster files |
|
220 |
inlistvar<-lines[,1] |
|
221 |
inlistvar<-paste(path,"/",as.character(inlistvar),sep="") |
|
222 |
covar_names<-as.character(lines[,2]) #Column two contains short names for covaraites |
|
223 |
|
|
224 |
s_raster<- stack(inlistvar) #Creating a stack of raster images from the list of variables. |
|
225 |
layerNames(s_raster)<-covar_names #Assigning names to the raster layers |
|
226 |
projection(s_raster)<-proj_str |
|
227 |
|
|
228 |
#Create mask using land cover data |
|
229 |
pos<-match("LC10",layerNames(s_raster)) #Find the layer which contains water bodies |
|
230 |
LC10<-subset(s_raster,pos) |
|
231 |
LC10[is.na(LC10)]<-0 #Since NA values are 0, we assign all zero to NA |
|
232 |
mask_land<-LC10<100 #All values below 100% water are assigned the value 1, value 0 is "water" |
|
233 |
mask_land_NA<-mask_land |
|
234 |
mask_land_NA[mask_land_NA==0]<-NA #Water bodies are assigned value 1 |
|
235 |
|
|
236 |
data_name<-"mask_land_OR" |
|
237 |
raster_name<-paste(data_name,".rst", sep="") |
|
238 |
writeRaster(mask_land, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
239 |
#writeRaster(r2, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
240 |
|
|
241 |
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM" |
|
242 |
ELEV_SRTM<-raster(s_raster,layer=pos) #Select layer from stack on 10/30 |
|
243 |
s_raster<-dropLayer(s_raster,pos) |
|
244 |
ELEV_SRTM[ELEV_SRTM <0]<-NA |
|
245 |
mask_ELEV_SRTM<-ELEV_SRTM>0 |
|
246 |
|
|
247 |
#Change this a in loop... |
|
248 |
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value" |
|
249 |
LC1<-raster(s_raster,layer=pos) #Select layer from stack |
|
250 |
s_raster<-dropLayer(s_raster,pos) |
|
251 |
LC1[is.na(LC1)]<-0 |
|
252 |
pos<-match("LC2",layerNames(s_raster)) #Find column with name "value" |
|
253 |
LC2<-raster(s_raster,layer=pos) #Select layer from stack |
|
254 |
s_raster<-dropLayer(s_raster,pos) |
|
255 |
LC2[is.na(LC2)]<-0 |
|
256 |
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value" |
|
257 |
LC3<-raster(s_raster,layer=pos) #Select layer from stack |
|
258 |
s_raster<-dropLayer(s_raster,pos) |
|
259 |
LC3[is.na(LC3)]<-0 |
|
260 |
pos<-match("LC4",layerNames(s_raster)) #Find column with name "value" |
|
261 |
LC4<-raster(s_raster,layer=pos) #Select layer from stack |
|
262 |
s_raster<-dropLayer(s_raster,pos) |
|
263 |
LC4[is.na(LC4)]<-0 |
|
264 |
pos<-match("LC6",layerNames(s_raster)) #Find column with name "value" |
|
265 |
LC6<-raster(s_raster,layer=pos) #Select layer from stack |
|
266 |
s_raster<-dropLayer(s_raster,pos) |
|
267 |
LC6[is.na(LC6)]<-0 |
|
268 |
pos<-match("LC7",layerNames(s_raster)) #Find column with name "value" |
|
269 |
LC7<-raster(s_raster,layer=pos) #Select layer from stack |
|
270 |
s_raster<-dropLayer(s_raster,pos) |
|
271 |
LC7[is.na(LC7)]<-0 |
|
272 |
pos<-match("LC9",layerNames(s_raster)) #Find column with name "LC9", this is wetland... |
|
273 |
LC9<-raster(s_raster,layer=pos) #Select layer from stack |
|
274 |
s_raster<-dropLayer(s_raster,pos) |
|
275 |
LC9[is.na(LC9)]<-0 |
|
276 |
|
|
277 |
LC_s<-stack(LC1,LC2,LC3,LC4,LC6,LC7) |
|
278 |
layerNames(LC_s)<-c("LC1_forest","LC2_shrub","LC3_grass","LC4_crop","LC6_urban","LC7_barren") |
|
279 |
LC_s <-mask(LC_s,mask_ELEV_SRTM) |
|
280 |
plot(LC_s) |
|
281 |
|
|
282 |
s_raster<-addLayer(s_raster, LC_s) |
|
283 |
|
|
284 |
################ VISUALIZATION !!!!!!!! ############ |
|
285 |
#updated the analysis |
|
286 |
|
|
287 |
dates<-c("20100901") |
|
288 |
i=2 |
|
289 |
|
|
290 |
for(i in 1:length(dates)){ |
|
291 |
|
|
292 |
date_selected<-dates[i] |
|
293 |
|
|
294 |
#Selecting model from stack |
|
295 |
mf_selected<-"FSS_kr" #model to be used in the assessment...fusion+kr |
|
296 |
mc_selected<-"CAI_mod6" #model to be used in the assessment...CAI+kr... |
|
297 |
###Note that the order of the layer is not the same as in the dataframe..this part can be modified later |
|
298 |
|
|
299 |
m_fus<-3 #model image to use in fus: mod7 is 1 in raster stack: |
|
300 |
m_CAI<-2 #model image to use in CAI: mod+1 |
|
301 |
rast_fus_pred<-raster(predictions,m_fus) # Select the first model from the stack i.e fusion with kriging for both steps |
|
302 |
rast_cai_pred<-raster(predictions,m_CAI) |
|
303 |
layerNames(rast_cai_pred)<-paste("cai",date_selected,sep="_") |
|
304 |
layerNames(rast_fus_pred)<-paste("fus",date_selected,sep="_") |
|
305 |
|
|
306 |
## Start difference analysis |
|
307 |
#Calculate difference image for the date selected |
|
308 |
rast_diff<-rast_fus_pred-rast_cai_pred |
|
309 |
layerNames(rast_diff)<-paste("diff",date_selected,sep="_") |
|
310 |
mean_val<-cellStats(rast_diff,mean) |
|
311 |
sd_val<-cellStats(rast_diff,sd) |
|
312 |
|
|
313 |
#Summarize results using plot |
|
314 |
#LC1 and LC3 and LC4 |
|
315 |
avl<-c(0,10,1,10,20,2,20,30,3,30,40,4,40,50,5,50,60,6,60,70,7,70,80,8,80,90,9,90,100,10)#Note that category 1 does not include 0!! |
|
316 |
rclmat<-matrix(avl,ncol=3,byrow=TRUE) |
|
317 |
LC1_rec<-reclass(LC1,rclmat) #Loss of layer names when using reclass |
|
318 |
LC2_rec<-reclass(LC2,rclmat) #Loss of layer names when using reclass |
|
319 |
LC3_rec<-reclass(LC3,rclmat) #Loss of layer names when using reclass |
|
320 |
LC4_rec<-reclass(LC4,rclmat) #Loss of layer names when using reclass |
|
321 |
LC6_rec<-reclass(LC6,rclmat) #Loss of layer names when using reclass |
|
322 |
|
|
323 |
#LC_s<-stack(LC1,LC3,LC4,LC6) |
|
324 |
LC_s<-stack(LC1,LC2,LC3,LC4,LC6) |
|
325 |
layerNames(LC_s)<-c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban") |
|
326 |
LC_s<-mask(LC_s,mask_ELEV_SRTM) |
|
327 |
LC_rec_s<-reclass(LC_s,rclmat) |
|
328 |
|
|
329 |
#plot average difference per class of forest and LC2 |
|
330 |
rast_stack_zones<-LC_rec_s |
|
331 |
|
|
332 |
avg_LC1_rec<-zonal(rast_diff,zones=LC1_rec,stat="mean",na.rm=TRUE) |
|
333 |
avg_LC2_rec<-zonal(rast_diff,zones=LC2_rec,stat="mean",na.rm=TRUE) |
|
334 |
avg_LC3_rec<-zonal(rast_diff,zones=LC3_rec,stat="mean",na.rm=TRUE) |
|
335 |
avg_LC4_rec<-zonal(rast_diff,zones=LC4_rec,stat="mean",na.rm=TRUE) |
|
336 |
avg_LC6_rec<-zonal(rast_diff,zones=LC6_rec,stat="mean",na.rm=TRUE) |
|
337 |
|
|
338 |
std_LC1_rec<-zonal(rast_diff,zones=LC1_rec,stat="sd",na.rm=TRUE) |
|
339 |
std_LC2_rec<-zonal(rast_diff,zones=LC2_rec,stat="sd",na.rm=TRUE) |
|
340 |
std_LC3_rec<-zonal(rast_diff,zones=LC3_rec,stat="sd",na.rm=TRUE) |
|
341 |
std_LC4_rec<-zonal(rast_diff,zones=LC4_rec,stat="sd",na.rm=TRUE) |
|
342 |
std_LC6_rec<-zonal(rast_diff,zones=LC6_rec,stat="sd",na.rm=TRUE) |
|
343 |
|
|
344 |
avg_LC_rec<-zonal(rast_diff,zones=LC_rec_s,stat="mean",na.rm=TRUE) |
|
345 |
std_LC_rec<-zonal(rast_diff,zones=LC_rec_s,stat="sd",na.rm=TRUE) |
|
346 |
|
|
347 |
zones_stat_std<-as.data.frame(cbind(std_LC1_rec,std_LC2_rec[,2],std_LC3_rec[,2],std_LC4_rec[,2],std_LC6_rec[,2])) |
|
348 |
zones_stat<-as.data.frame(cbind(avg_LC1_rec,avg_LC2_rec[,2],avg_LC3_rec[,2],avg_LC4_rec[,2],avg_LC6_rec[,2])) |
|
349 |
names(zones_stat)<-c("zones","LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban") |
|
350 |
names(zones_stat_std)<-c("zones","LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban") |
|
351 |
|
|
352 |
X11() |
|
353 |
#Selecting model from stack |
|
354 |
#mf_selected<-"FSS_kr" #model to be used in the assessment...fusion+kr |
|
355 |
#mc_selected<-"CAI_mod7" #model to be used in the assessment...CAI+kr... |
|
356 |
plot(zones_stat$zones,zones_stat$LC1_forest,type="b",ylim=c(-4.5,4.5), |
|
357 |
ylab="",xlab="",axes=FALSE) |
|
358 |
mtext("difference between FSS and CAI (degree C)",line=3,side=2,cex=1.2,font=2) #Add ylab with distance 3 from box |
|
359 |
mtext("land cover percent classes",side=1,cex=1.2,line=3,font=2) |
|
360 |
lines(zones_stat$zones,zones_stat[,3],col="red",type="b") |
|
361 |
lines(zones_stat$zones,zones_stat[,4],col="blue",type="b") |
|
362 |
lines(zones_stat$zones,zones_stat[,5],col="darkgreen",type="b") |
|
363 |
lines(zones_stat$zones,zones_stat[,6],col="purple",type="b") |
|
364 |
breaks_lab<-zones_stat$zones |
|
365 |
tick_lab<-c("0","1-10","","20-30","","40-50","","60-70","","80-90","90-100") #Not enough space for |
|
366 |
#tick_lab<-c("0","10-20","30-40","60-70","80-90","90-100") |
|
367 |
axis(side=1,las=1,tick=TRUE, |
|
368 |
at=breaks_lab,labels=tick_lab, cex.axis=1.2,font=2) #reduce number of labels to Jan and June |
|
369 |
#text(tick_lab, par(“usr”)[3], labels = tick_lab, srt = 45, adj = c(1.1,1.1), xpd = TRUE, cex=.9) |
|
370 |
axis(2,cex.axis=1.2,font=2) |
|
371 |
box() |
|
372 |
legend("topleft",legend=c("LC1_forest", "LC2_shrub", "LC3_grass", "LC4_crop", "LC6_urban"), |
|
373 |
cex=1, col=c("black","red","blue","darkgreen","purple"),bty="n", |
|
374 |
lty=1) |
|
375 |
title(paste("Prediction tmax difference (",mf_selected,"-",mc_selected,") and land cover ",sep=""),cex=1.4,font=2) |
|
376 |
savePlot(paste("fig6_diff_prediction_tmax_difference_land cover",mf_selected,mc_selected,date_selected,out_prefix,".png", sep="_"), type="png") |
|
377 |
dev.off() |
|
378 |
|
|
379 |
LC1<-mask(LC1,mask_ELEV_SRTM) |
|
380 |
cellStats(LC1,"countNA") #Check that NA have been assigned to water and areas below 0 m |
|
381 |
|
|
382 |
LC1_50_m<- LC1>50 |
|
383 |
LC1_100_m<- LC1>=100 |
|
384 |
LC1_50_m[LC1_50_m==0]<-NA |
|
385 |
LC1_100_m[LC1_100_m==0]<-NA |
|
386 |
LC1_50<-LC1_50_m*LC1 |
|
387 |
LC1_100<-LC1_100_m*LC1 |
|
388 |
avl<-c(0,500,1,500,1000,2,1000,1500,3,1500,2000,4,2000,4000,5) |
|
389 |
rclmat<-matrix(avl,ncol=3,byrow=TRUE) |
|
390 |
elev_rec<-reclass(ELEV_SRTM,rclmat) #Loss of layer names when using reclass |
|
391 |
|
|
392 |
elev_rec_forest<-elev_rec*LC1_100_m |
|
393 |
avg_elev_rec<-zonal(rast_diff,zones=elev_rec,stat="mean",na.rm=TRUE) |
|
394 |
std_elev_rec<-zonal(rast_diff,zones=elev_rec,stat="sd",na.rm=TRUE) |
|
395 |
avg_elev_rec_forest<-zonal(rast_diff,zones=elev_rec_forest,stat="mean",na.rm=TRUE) |
|
396 |
std_elev_rec_forest<-zonal(rast_diff,zones=elev_rec_forest,stat="sd",na.rm=TRUE) |
|
397 |
|
|
398 |
## CREATE plots |
|
399 |
X11() |
|
400 |
plot(avg_elev_rec[,1],avg_elev_rec[,2],type="b",ylim=c(-10,1), |
|
401 |
ylab="",xlab="",axes=FALSE) |
|
402 |
mtext("tmax difference between FSS and CAI (degree C)",side=2,cex=1.2,line=3,font=2) |
|
403 |
mtext("elevation classes (m)",side=1,cex=1.2,line=3,font=2) |
|
404 |
lines(avg_elev_rec_forest[,1],avg_elev_rec_forest[,2],col="green",type="b") #Elevation and 100% forest... |
|
405 |
breaks_lab<-avg_elev_rec[,1] |
|
406 |
elev_lab<-c("0-500","500-1000","1000-1500","1500-2000","2000-4000") |
|
407 |
axis(side=1,las=1, |
|
408 |
at=breaks_lab,labels=elev_lab, cex=1.5,font=2) #reduce number of labels to Jan and June |
|
409 |
axis(2,cex.axis=1.2,font=2) |
|
410 |
legend("bottomleft",legend=c("Elevation", "elev_forest"), |
|
411 |
cex=1, lwd=1.3,col=c("black","green"),bty="n", |
|
412 |
lty=1) |
|
413 |
box() |
|
414 |
title(paste("Prediction tmax difference (",mf_selected,"-",mc_selected,") and elevation ",sep=""),cex=1.4,font=2) |
|
415 |
savePlot(paste("fig7_diff_prediction_tmax_difference_elevation",mf_selected,mc_selected,date_selected,out_prefix,".png", sep="_"), type="png") |
|
416 |
dev.off() |
|
417 |
#Add plots with std as CI |
|
418 |
|
|
419 |
} |
Also available in: Unified diff
code for figure paper and conference:land cover elevation difference,spatial transects