Revision 3edc5450
Added by Benoit Parmentier over 8 years ago
climate/research/oregon/interpolation/NASA2016_conference_temperature_predictions.R | ||
---|---|---|
141 | 141 |
return(raster_name_out) |
142 | 142 |
} |
143 | 143 |
|
144 |
plot_raster_mosaic <- function(i,list_param){ |
|
145 |
#Function to plot mosaic for poster |
|
146 |
# |
|
147 |
l_dates <- list_param$l_dates |
|
148 |
r_mosaiced_scaled <- list_param$r_mosaiced_scaled |
|
149 |
NA_flag_val <- list_param$NA_flag_val |
|
150 |
out_dir <- list_param$out_dir |
|
151 |
out_suffix <- list_param$out_suffix |
|
152 |
region_name <- list_param$region_name |
|
153 |
variable_name <- list_param$variable_name |
|
154 |
|
|
155 |
#for (i in 1:length(nlayers(r_mosaic_scaled))){ |
|
156 |
|
|
157 |
date_proc <- l_dates[i] |
|
158 |
r_pred <- subset(r_mosaic_scaled,i) |
|
159 |
NAvalue(r_pred)<- NA_flag_val |
|
160 |
|
|
161 |
date_proc <- l_dates[i] |
|
162 |
date_val <- as.Date(strptime(date_proc,"%Y%m%d")) |
|
163 |
#month_name <- month.name(date_val) |
|
164 |
month_str <- format(date_val, "%b") ## Month, char, abbreviated |
|
165 |
year_str <- format(date_val, "%Y") ## Year with century |
|
166 |
day_str <- as.numeric(format(date_val, "%d")) ## numeric month |
|
167 |
date_str <- paste(month_str," ",day_str,", ",year_str,sep="") |
|
168 |
|
|
169 |
res_pix <- 1200 |
|
170 |
#res_pix <- 480 |
|
171 |
col_mfrow <- 1 |
|
172 |
row_mfrow <- 1 |
|
173 |
|
|
174 |
png_filename <- file.path(out_dir,paste("Figure4_clim_mosaics_day_","_",date_proc,"_",region_name,"_",out_suffix,".png",sep ="")) |
|
175 |
title_str <- paste("Predicted ",variable_name, " on ",date_str , " ", sep = "") |
|
176 |
|
|
177 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
178 |
plot(r_pred,main =title_str,cex.main =1.5,col=matlab.like(255),zlim=c(-50,50), |
|
179 |
legend.shrink=0.8,legend.width=0.8) |
|
180 |
#axis.args = list(cex.axis = 1.6), #control size of legend z |
|
181 |
#legend.args=list(text='dNBR', side=4, line=2.5, cex=2.2)) |
|
182 |
#legend.args=list(text='dNBR', side=4, line=2.49, cex=1.6)) |
|
183 |
dev.off() |
|
184 |
|
|
185 |
return(png_filename) |
|
186 |
} |
|
187 |
|
|
188 |
extract_date <- function(i,x,item_no=NULL){ |
|
189 |
y <- unlist(strsplit(x[[i]],"_")) |
|
190 |
if(is.null(item_no)){ |
|
191 |
date_str <- y[length(y)-2] #count from end |
|
192 |
}else{ |
|
193 |
date_str <- y[item_no] |
|
194 |
} |
|
195 |
return(date_str) |
|
196 |
} |
|
197 |
|
|
144 | 198 |
############################### |
145 | 199 |
####### Parameters, constants and arguments ### |
146 | 200 |
|
... | ... | |
281 | 335 |
|
282 | 336 |
lf_mosaic_plot_fig <- mclapply(1:length(lf_mosaic_scaled),FUN=plot_raster_mosaic,list_param=list_param_plot_raster_mosaic,mc.preschedule=FALSE,mc.cores = num_cores) |
283 | 337 |
|
284 |
plot_raster_mosaic <- function(i,list_param){ |
|
285 |
#Function to plot mosaic for poster |
|
286 |
# |
|
287 |
l_dates <- list_param$l_dates |
|
288 |
r_mosaiced_scaled <- list_param$r_mosaiced_scaled |
|
289 |
NA_flag_val <- list_param$NA_flag_val |
|
290 |
out_dir <- list_param$out_dir |
|
291 |
out_suffix <- list_param$out_suffix |
|
292 |
region_name <- list_param$region_name |
|
293 |
variable_name <- list_param$variable_name |
|
294 |
|
|
295 |
#for (i in 1:length(nlayers(r_mosaic_scaled))){ |
|
296 |
|
|
297 |
date_proc <- l_dates[i] |
|
298 |
r_pred <- subset(r_mosaic_scaled,i) |
|
299 |
NAvalue(r_pred)<- NA_flag_val |
|
300 |
|
|
301 |
date_proc <- l_dates[i] |
|
302 |
date_val <- as.Date(strptime(date_proc,"%Y%m%d")) |
|
303 |
#month_name <- month.name(date_val) |
|
304 |
month_str <- format(date_val, "%b") ## Month, char, abbreviated |
|
305 |
year_str <- format(date_val, "%Y") ## Year with century |
|
306 |
day_str <- as.numeric(format(date_val, "%d")) ## numeric month |
|
307 |
date_str <- paste(month_str," ",day_str,", ",year_str,sep="") |
|
308 |
|
|
309 |
res_pix <- 1200 |
|
310 |
#res_pix <- 480 |
|
311 |
col_mfrow <- 1 |
|
312 |
row_mfrow <- 1 |
|
313 |
|
|
314 |
png_filename <- file.path(out_dir,paste("Figure4_clim_mosaics_day_","_",date_proc,"_",region_name,"_",out_suffix,".png",sep ="")) |
|
315 |
title_str <- paste("Predicted ",variable_name, " on ",date_str , " ", sep = "") |
|
316 |
|
|
317 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
318 |
plot(r_pred,main =title_str,cex.main =1.5,col=matlab.like(255),zlim=c(-50,50), |
|
319 |
legend.shrink=0.8,legend.width=0.8) |
|
320 |
#axis.args = list(cex.axis = 1.6), #control size of legend z |
|
321 |
#legend.args=list(text='dNBR', side=4, line=2.5, cex=2.2)) |
|
322 |
#legend.args=list(text='dNBR', side=4, line=2.49, cex=1.6)) |
|
323 |
dev.off() |
|
324 | 338 |
|
325 |
return(png_filename) |
|
326 |
} |
|
327 | 339 |
|
328 | 340 |
############### PART2: temporal profile ############# |
329 | 341 |
#### Extract time series |
... | ... | |
331 | 343 |
#-65,-22 |
332 | 344 |
|
333 | 345 |
df_points <- read.table(df_points_extracted_fname,sep=",") |
334 |
df_centroids <- read.table(df_centroids_fname,sep=",") |
|
346 |
df_points_tmp <- df_points |
|
347 |
df_points <- as.data.frame(t(df_points)) |
|
348 |
names(df_points) <- paste0("ID_",1:ncol(df_points)) |
|
349 |
|
|
350 |
#df_centroids <- read.table(df_centroids_fname,sep=",") |
|
335 | 351 |
|
336 | 352 |
coordinates(df_centroids)<- c("long","lat") |
337 | 353 |
proj4string(df_centroids) <- CRS_locs_WGS84 |
... | ... | |
342 | 358 |
|
343 | 359 |
df_points$files <- lf_mosaic_list |
344 | 360 |
|
345 |
extract_date <- function(i,x){ |
|
346 |
y <- unlist(strsplit(x[[i]],"_")) |
|
347 |
date_str <- y[length(y)-2] |
|
348 |
} |
|
349 | 361 |
#debug(extract_date) |
350 |
#test <- (extract_date(1,lf_mosaic_list)) |
|
351 |
|
|
352 |
list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,mc.preschedule=FALSE,mc.cores = num_cores)) |
|
353 |
#list_dates_produced <- mclapply(1:11,FUN=extract_date,mc.preschedule=FALSE,x=lf_mosaic_list,mc.cores = num_cores) |
|
362 |
#test <- extract_date(6431,lf_mosaic_list,12) #extract item number 12 from the name of files to get the data |
|
354 | 363 |
|
364 |
list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,x=lf_mosaic_list,item_no=12,mc.preschedule=FALSE,mc.cores = num_cores)) |
|
365 |
#list_dates_produced <- mclapply(6400:6431,FUN=extract_date,x=lf_mosaic_list,item_no=12,mc.preschedule=FALSE,mc.cores = num_cores) |
|
355 | 366 |
|
356 | 367 |
list_dates_produced_date_val <- as.Date(strptime(list_dates_produced,"%Y%m%d")) |
357 | 368 |
month_str <- format(list_dates_produced_date_val, "%b") ## Month, char, abbreviated |
... | ... | |
363 | 374 |
df_points$year <- year_str |
364 | 375 |
df_points$day <- day_str |
365 | 376 |
|
377 |
unique_date_tb <-table(df_points$date) |
|
378 |
unique_date <- unique(df_points$date) |
|
379 |
|
|
380 |
station_id <- 8 |
|
381 |
var_name <-paste0("ID_",station_id) |
|
382 |
#aggregate(sdf_tmp |
|
383 |
if(max(unique_date_tb)>1){ |
|
384 |
# formula_str <- paste(var_name," ~ ","TRIP_START_DATE_f",sep="") |
|
385 |
var_pix <- aggregate(ID_8 ~ date, data = df_points, mean) #aggregate by date |
|
386 |
} |
|
387 |
|
|
388 |
|
|
389 |
#start_date <-input$dates[1] |
|
390 |
#end_date <-input$dates[2] |
|
391 |
|
|
392 |
d_z_tmp <- zoo(df_points[,station_id],df_points$date) |
|
393 |
|
|
394 |
|
|
395 |
d_z <- window(d_z_tmp,start=start_date,end=end_date) |
|
396 |
|
|
397 |
|
|
366 | 398 |
#data_pixel <- data_df[id_selected,] |
367 | 399 |
#data_pixel$rainfall <- as.numeric(data_pixel$rainfall) |
368 | 400 |
#d_z_tmp <-zoo(data_pixel$rainfall,as.Date(data_pixel$date)) |
... | ... | |
378 | 410 |
#df2 <- as.data.frame(d_z2) |
379 | 411 |
#names(df2)<- var_name |
380 | 412 |
|
413 |
#df_tmp <- subset(data_var,data_var$ID_stat==id_name) |
|
414 |
#if(da) |
|
415 |
|
|
381 | 416 |
|
382 | 417 |
############################ END OF SCRIPT ################################## |
Also available in: Unified diff
cleaning code and plotting time series for raster stack at centroids for NASA conference