Project

General

Profile

« Previous | Next » 

Revision 3ff91d1a

Added by Benoit Parmentier almost 9 years ago

initial commit new code for extreme values study, scaling up assessment part 5

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part5.R
1
##############################  INTERPOLATION OF TEMPERATURES  #######################################
2
#######################  Script for assessment of scaling up on NEX : part5 ##############################
3
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA.
4
#Combining tables and figures for individual runs for years and tiles.
5
#This script complements part1 and part2 of the accuracy assessment and group tables and outputs 
6
#from run of accuracy assessement generated earlier.
7
#It focuses on additional analyses, figures, tables of accuracy values. In particular, extreme values by tiles.
8
#AUTHOR: Benoit Parmentier 
9
#CREATED ON: 02/25/2016  
10
#MODIFIED ON: 02/28/2016            
11
#Version: 5
12
#PROJECT: Environmental Layers project     
13
#COMMENTS: Initial commit, script based on part 3 of assessment, will be modified further for overall assessment 
14
#TODO:
15
#1) 
16

  
17
#First source these files:
18
#Resolved call issues from R.
19
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh 
20
#
21
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015
22

  
23
#################################################################################################
24

  
25
#### FUNCTION USED IN SCRIPT
26

  
27
#function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
28
#function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
29
#function_global_run_assessment_part2 <- "global_run_scalingup_assessment_part2_functions_0923015.R"
30

  
31
############################################
32
#### Parameters and constants  
33

  
34
#on ATLAS
35
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas
36
#parent output dir : contains subset of the data produced on NEX
37
#in_dir1 <- "/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/output20Deg2"
38
# parent output dir for the curent script analyes
39
#out_dir <-"/data/project/layers/commons/NEX_data/output_run3_global_analyses_06192014/" #On NCEAS Atlas
40
# input dir containing shapefiles defining tiles
41
#in_dir_shp <- "/data/project/layers/commons/NEX_data/output_run5_global_analyses_08252014/output/subset/shapefiles"
42

  
43
#On NEX
44
#contains all data from the run by Alberto
45
#in_dir1 <- " /nobackupp6/aguzman4/climateLayers/out_15x45/" #On NEX
46
#parent output dir for the current script analyes
47
#out_dir <- "/nobackup/bparmen1/" #on NEX
48
#in_dir_shp <- "/nobackupp4/aguzman4/climateLayers/output4/subset/shapefiles/"
49

  
50
#in_dir <- "/data/project/layers/commons/NEX_data/reg4_assessment"
51
#list_in_dir_run <-
52
#in_dir_list <-  c("output_run_global_analyses_pred_2009_reg4","output_run_global_analyses_pred_2010_reg4",
53
#                  "output_run_global_analyses_pred_2011_reg4","output_run_global_analyses_pred_2012_reg4",
54
#                  "output_run_global_analyses_pred_2013_reg4","output_run_global_analyses_pred_2014_reg4")
55
#in_dir_list_filename <- "/data/project/layers/commons/NEX_data/reg4_assessment/stage6_reg4_in_dir_list_02072016.txt"
56
#in_dir <- "" #PARAM 0
57
#y_var_name <- "dailyTmax" #PARAM1
58
#interpolation_method <- c("gam_CAI") #PARAM2
59
#out_suffix <- "global_analyses_overall_assessment_reg4_02072016"
60
#out_suffix <- "output_run10_1000x3000_global_analyses_02102015"
61
#out_suffix <- "run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM3
62
#out_dir <- "/data/project/layers/commons/NEX_data/output_run10_1500x4500_global_analyses_pred_1992_10052015" #PARAM4
63
#create_out_dir_param <- TRUE #PARAM 5
64
#mosaic_plot <- FALSE #PARAM6
65
#if daily mosaics NULL then mosaicas all days of the year
66
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7
67
#CRS_WGS84 <-    CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 #CONSTANT1
68
#CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
69
#proj_str<- CRS_WGS84 #PARAM 8 #check this parameter
70
#file_format <- ".rst" #PARAM 9
71
#NA_value <- -9999 #PARAM10
72
#NA_flag_val <- NA_value
73
#multiple_region <- TRUE #PARAM 12
74
#region_name <- "world" #PARAM 13
75
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
76
#plot_region <- TRUE
77
#num_cores <- 6 #PARAM 14
78
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
79
#use previous files produced in step 1a and stored in a data.frame
80
#df_assessment_files <- "df_assessment_files_reg4_1984_run_global_analyses_pred_12282015.txt" #PARAM 17
81
#threshold_missing_day <- c(367,365,300,200) #PARM18
82

  
83
#list_param_run_assessment_plottingin_dir <- list(in_dir,y_var_name, interpolation_method, out_suffix, 
84
#                      out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_value,
85
#                      multiple_region, countries_shp, plot_region, num_cores, 
86
#                      region_name, df_assessment_files, threshold_missing_day) 
87

  
88
#names(list_param_run_assessment_plottingin_dir) <- c("in_dir","y_var_name","interpolation_method","out_suffix", 
89
#                      "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_value",
90
#                      "multiple_region","countries_shp","plot_region","num_cores", 
91
#                      "region_name","df_assessment_files","threshold_missing_day") 
92

  
93
#run_assessment_plotting_prediction_fun(list_param_run_assessment_plottingin_dir) 
94

  
95
run_assessment_combined_region_plotting_prediction_fun <-function(list_param_run_assessment_plotting){
96
  
97
  ####
98
  #1) in_dir: input directory containing data tables and shapefiles for plotting #PARAM 0
99
  #2) y_var_name : variables being predicted e.g. dailyTmax #PARAM1
100
  #3) interpolation_method: method used #c("gam_CAI") #PARAM2
101
  #4) out_suffix: output suffix #PARAM3
102
  #5) out_dir  #
103
  #6) create_out_dir_param # FALSE #PARAM 5
104
  #7) mosaic_plot  #FALSE #PARAM6
105
  #8) proj_str # projection/coordinates system e.g. CRS_WGS84 #PARAM 8 #check this parameter
106
  #9) file_format #".rst" #PARAM 9
107
  #10) NA_value #-9999 #PARAM10
108
  #11) multiple_region  # <- TRUE #PARAM 12
109
  #12) countries_shp  #<- "world" #PARAM 13
110
  #13) plot_region  #<- TRUE
111
  #14) num_cores <- number of cores used # 6 #PARAM 14
112
  #15) region_name  #<- c("reg4"), world if full assessment #reference region to merge if necessary #PARAM 16
113
  #16) df_assessment_files  #PARAM 16
114
  #17) threshold_missing_day  #PARM18
115
  #18) year_predicted
116
  
117
  ### Loading R library and packages        
118
  #library used in the workflow production:
119
  library(gtools)                              # loading some useful tools 
120
  library(mgcv)                                # GAM package by Simon Wood
121
  library(sp)                                  # Spatial pacakge with class definition by Bivand et al.
122
  library(spdep)                               # Spatial pacakge with methods and spatial stat. by Bivand et al.
123
  library(rgdal)                               # GDAL wrapper for R, spatial utilities
124
  library(gstat)                               # Kriging and co-kriging by Pebesma et al.
125
  library(fields)                              # NCAR Spatial Interpolation methods such as kriging, splines
126
  library(raster)                              # Hijmans et al. package for raster processing
127
  library(gdata)                               # various tools with xls reading, cbindX
128
  library(rasterVis)                           # Raster plotting functions
129
  library(parallel)                            # Parallelization of processes with multiple cores
130
  library(maptools)                            # Tools and functions for sp and other spatial objects e.g. spCbind
131
  library(maps)                                # Tools and data for spatial/geographic objects
132
  library(reshape)                             # Change shape of object, summarize results 
133
  library(plotrix)                             # Additional plotting functions
134
  library(plyr)                                # Various tools including rbind.fill
135
  library(spgwr)                               # GWR method
136
  library(automap)                             # Kriging automatic fitting of variogram using gstat
137
  library(rgeos)                               # Geometric, topologic library of functions
138
  #RPostgreSQL                                 # Interface R and Postgres, not used in this script
139
  library(gridExtra)
140
  #Additional libraries not used in workflow
141
  library(pgirmess)                            # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess}  
142
  library(colorRamps)
143
  library(zoo)
144
  library(xts)
145
  
146
  ####### Function used in the script #######
147
  
148
  #script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts"
149
  #function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R"
150
  #source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script 
151

  
152
  ####### PARSE INPUT ARGUMENTS/PARAMETERS #####
153
  in_dir_list_filename <- list_param_run_assessment_plotting$in_dir_list_filename #PARAM 0
154
  in_dir <- list_param_run_assessment_plotting$in_dir #PARAM 1
155
  y_var_name <- list_param_run_assessment_plotting$y_var_name #PARAM2
156
  interpolation_method <- list_param_run_assessment_plotting$interpolation_method #c("gam_CAI") #PARAM3
157
  out_suffix <- list_param_run_assessment_plotting$out_suffix #PARAM4
158
  out_dir <- list_param_run_assessment_plotting$out_dir # PARAM5
159
  create_out_dir_param <- list_param_run_assessment_plotting$create_out_dir_param # FALSE #PARAM 6
160
  mosaic_plot <- list_param_run_assessment_plotting$mosaic_plot #FALSE #PARAM7
161
  proj_str<- list_param_run_assessment_plotting$proj_str #CRS_WGS84 #PARAM 8 #check this parameter
162
  file_format <- list_param_run_assessment_plotting$file_format #".rst" #PARAM 9
163
  NA_flag_val <- list_param_run_assessment_plotting$NA_flag_val #-9999 #PARAM10
164
  multiple_region <- list_param_run_assessment_plotting$multiple_region # <- TRUE #PARAM 11
165
  countries_shp <- list_param_run_assessment_plotting$countries_shp #<- "world" #PARAM 12
166
  plot_region <- list_param_run_assessment_plotting$plot_region # PARAM13 
167
  num_cores <- list_param_run_assessment_plotting$num_cores # 6 #PARAM 14
168
  region_name <- list_param_run_assessment_plotting$region_name #<- "world" #PARAM 15
169
  #df_assessment_files_name <- list_param_run_assessment_plotting$df_assessment_files_name #PARAM 16
170
  threshold_missing_day <- list_param_run_assessment_plotting$threshold_missing_day #PARM17
171
  year_predicted <- list_param_run_assessment_plotting$year_predicted
172
 
173
  NA_value <- NA_flag_val 
174
  metric_name <- "rmse" #to be added to the code later...
175
  
176
  ##################### START SCRIPT #################
177
  
178
  ####### PART 1: Read in data ########
179
  out_dir <- in_dir
180
  if(create_out_dir_param==TRUE){
181
    out_dir <- create_dir_fun(out_dir,out_suffix)
182
    setwd(out_dir)
183
  }else{
184
    setwd(out_dir) #use previoulsy defined directory
185
  }
186

  
187
  setwd(out_dir)
188
  
189
  list_outfiles <- vector("list", length=35) #collect names of output files, this should be dynamic?
190
  list_outfiles_names <- vector("list", length=35) #collect names of output files
191
  counter_fig <- 0 #index of figure to collect outputs
192
  
193
  #i <- year_predicted
194
  ###Table 1: Average accuracy metrics
195
  ###Table 2: daily accuracy metrics for all tiles
196

  
197
  in_dir_list <- as.list(read.table(in_dir_list_filename,stringsAsFactors=F)[,1])
198
  
199
  ##Read in data list from in_dir_list
200
  list_tb_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_diagnostic_v_NA_.*.txt",full.names=T)
201
  list_df_fname <- list.files(path=file.path(in_dir,in_dir_list),"df_tile_processed_.*..txt",full.names=T)
202
  list_summary_metrics_v_fname <- list.files(path=file.path(in_dir,in_dir_list),"summary_metrics_v2_NA_.*.txt",full.names=T)
203
  list_tb_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_diagnostic_s_NA.*.txt",full.names=T)
204
  list_tb_month_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"tb_month_diagnostic_s.*.txt",full.names=T)
205
  list_data_month_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_month_s.*.txt",full.names=T)
206
  list_data_s_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_day_s.*.txt",full.names=T)
207
  list_data_v_fname <- list.files(path=file.path(in_dir,in_dir_list),"data_day_v.*.txt",full.names=T)
208
  list_pred_data_month_info_fname <- list.files(path=file.path(in_dir,in_dir_list),"pred_data_month_info.*.txt",full.names=T)
209
  list_pred_data_day_info_fname <- list.files(path=file.path(in_dir,in_dir_list),"pred_data_day_info.*.txt",full.names=T)
210
  
211
  #need to fix this !! has all of the files in one list (for a region)
212
  #list_shp <- list.files(path=file.path(in_dir,file.path(in_dir_list,"shapefiles")),"*.shp",full.names=T)
213

  
214
  ## Step 2: only read what is necessary at this stage...
215
  list_tb <- lapply(list_tb_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
216
  tb <- do.call(rbind,list_tb)
217
  list_tb_s <- lapply(list_tb_s_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
218
  tb_s <- do.call(rbind,list_tb_s)
219
  
220
  list_df_tile_processed <- lapply(list_df_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
221
  df_tile_processed <- do.call(rbind,list_df_tile_processed)  
222
  list_summary_metrics_v <- lapply(list_summary_metrics_v_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
223
  summary_metrics_v <- do.call(rbind,list_summary_metrics_v)  
224

  
225
  list_tb_month_s <- lapply(list_tb_month_s_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
226
  tb_month_s <- do.call(rbind,list_tb_month_s)  
227
  
228
  list_tb_data_s <- lapply(list_data_s_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
229
  tb_data_s <- do.call(rbind,list_tb_data_s) 
230

  
231
  list_tb_data_v <- lapply(list_data_v_fname,function(x){read.table(x,stringsAsFactors=F,sep=",")})
232
  tb_data_v <- do.call(rbind,list_tb_data_v) 
233

  
234
  ##Stop added
235
  ##Screen for non shapefiles tiles due to dir
236
  df_tile_processed <- df_tile_processed[!is.na(df_tile_processed$shp_files),] 
237
  
238
  #add column for tile size later on!!!
239
  
240
  tb$pred_mod <- as.character(tb$pred_mod)
241
  summary_metrics_v$pred_mod <- as.character(summary_metrics_v$pred_mod)
242
  summary_metrics_v$tile_id <- as.character(summary_metrics_v$tile_id)
243
  df_tile_processed$tile_id <- as.character(df_tile_processed$tile_id)
244
  
245
  tb_month_s$pred_mod <- as.character(tb_month_s$pred_mod)
246
  tb_month_s$tile_id<- as.character(tb_month_s$tile_id)
247
  tb_s$pred_mod <- as.character(tb_s$pred_mod)
248
  tb_s$tile_id <- as.character(tb_s$tile_id)
249
  
250
  #multiple regions? #this needs to be included in the previous script!!!
251
  #if(multiple_region==TRUE){
252
  df_tile_processed$reg <- as.character(df_tile_processed$reg)
253
  tb <- merge(tb,df_tile_processed,by="tile_id")
254
  tb_s <- merge(tb_s,df_tile_processed,by="tile_id")
255
  tb_month_s<- merge(tb_month_s,df_tile_processed,by="tile_id")
256
  summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id")
257
  #test <- merge(summary_metrics_v,df_tile_processed,by="tile_id",all=F)
258
  #duplicate columns...need to be cleaned up later
259
  try(tb$year_predicted <- tb$year_predicted.x)
260
  try(tb$reg <- tb$reg.x)
261
  try(summary_metrics_v$year_predicted <- summary_metrics_v$year_predicted.x)
262
  try(summary_metrics_v$reg <- summary_metrics_v$reg.x)  
263
  try(summary_metrics_v$lat <- summary_metrics_v$lat.x)
264
  try(summary_metrics_v$lon <- summary_metrics_v$lon.x)
265

  
266
  ############ PART 2: PRODUCE FIGURES ################
267
  
268
  
269
  tb_subset <- subset(tb,pred_mod=="mod1")
270
  
271
  #sqrt(var(tb_subset$rmse))
272
  
273
  std_dev_val <- sqrt(var(tb_subset[[metric_name]])) #e.g. rmse
274
  mean_val <- mean(tb_subset[[metric_name]])
275
  median_val <- median(tb_subset[[metric_name]])
276
  max_val <- max(tb_subset[[metric_name]])
277
  min_val <- min(tb_subset[[metric_name]])
278
  n_val <- length(tb_subset[[metric_name]])
279
    
280
  #mode(tb_subset[[metric_name]])
281
  
282
  stat_name <- c("std_dev","mean","median","max","min","n")
283
  stat_val <- c(std_dev_val,mean_val,median_val,max_val,min_val,n_val)
284
  df_stat <- data.frame(stat_name=stat_name,stat_val=stat_val)
285
  
286
  threshol_val <- c(5,6,10)
287
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshol_val[1])
288
  100*n_threshold_val/n_val
289

  
290
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshol_val[2])
291
  100*n_threshold_val/n_val
292
  
293
  n_threshold_val <- sum((tb_subset[[metric_name]]) > threshol_val[3])
294
  100*n_threshold_val/n_val
295
  
296
  #Find out where these values are located...by mapping extremes!
297
  
298
  
299
  
300
  
301
  
302
  
303
  ###########################
304
  ### Figure 1: plot location of the study area with tiles processed
305
  
306
  #df_tiled_processed <- na.omit(df_tile_processed) #remove other list of folders irrelevant
307
  #list_shp_reg_files <- df_tiled_processed$shp_files
308
  
309
  #list_shp_reg_files<- as.character(df_tile_processed$shp_files) #this could be the solution!!
310
  list_shp_reg_files <- as.character(basename(unique(df_tile_processed$shp_files))) #this could be the solution!!
311
  #the shapefiles must be copied in the proper folder!!!
312
  #list_shp_reg_files<- file.path(in_dir,in_dir_list[1],"shapefile",list_shp_reg_files)
313
  #list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
314
  #          as.character(df_tile_processed$tile_coord),"shapefiles",basename(list_shp_reg_files))
315
  #list_shp_reg_files <- file.path("/data/project/layers/commons/NEX_data/",out_dir,
316
                                  #"shapefiles",basename(list_shp_reg_files))
317
  
318
  ### Potential function starts here:
319
  #function(in_dir,out_dir,list_shp_reg_files,title_str,region_name,num_cores,out_suffix,out_suffix)
320
  
321
  ### First get background map to display where study area is located
322
  #can make this more general later on..should have this already in a local directory on Atlas or NEX!!!!
323
  
324
  #http://www.diva-gis.org/Data
325
  #countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp"
326
  path_to_shp <- dirname(countries_shp)
327
  layer_name <- sub(".shp","",basename(countries_shp))
328
  reg_layer <- readOGR(path_to_shp, layer_name)
329
  #proj4string(reg_layer) <- CRS_locs_WGS84
330
  #reg_shp<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
331
  
332
  centroids_pts <- vector("list",length(list_shp_reg_files))
333
  shps_tiles <- vector("list",length(list_shp_reg_files))
334
  #collect info: read in all shapfiles
335
  #This is slow...make a function and use mclapply??
336
  #/data/project/layers/commons/NEX_data/output_run6_global_analyses_09162014/shapefiles
337
  
338
  in_dir_shp <- file.path(in_dir,in_dir_list[[1]],"shapefiles") #this should be set as a input parameter!!!
339
  for(i in 1:length(list_shp_reg_files)){
340
    #path_to_shp <- dirname(list_shp_reg_files[[i]])
341
    path_to_shp <- in_dir_shp
342
    layer_name <- sub(".shp","",basename(list_shp_reg_files[[i]]))
343
    shp1 <- try(readOGR(path_to_shp, layer_name)) #use try to resolve error below
344
    #shp_61.0_-160.0
345
    #Geographical CRS given to non-conformant data: -186.331747678
346
    
347
    #shp1<-readOGR(dirname(list_shp_reg_files[[i]]),sub(".shp","",basename(list_shp_reg_files[[i]])))
348
    if (!inherits(shp1,"try-error")) {
349
      pt <- gCentroid(shp1)
350
      centroids_pts[[i]] <- pt
351
    }else{
352
      pt <- shp1
353
      centroids_pts[[i]] <- pt
354
    }
355
    shps_tiles[[i]] <- shp1
356
    #centroids_pts[[i]] <- centroids
357
  }
358
  
359
  #fun <- function(i,list_shp_files)
360
  #coord_names <- c("lon","lat")
361
  #l_ras#t <- rasterize_df_fun(test,coord_names,proj_str,out_suffix=out_suffix,out_dir=".",file_format,NA_flag_val,tolerance_val=0.000120005)
362
  
363
  #remove try-error polygons...we loose three tiles because they extend beyond -180 deg
364
  tmp <- shps_tiles
365
  shps_tiles <- remove_errors_list(shps_tiles) #[[!inherits(shps_tiles,"try-error")]]
366
  #shps_tiles <- tmp
367
  length(tmp)-length(shps_tiles) #number of tiles with error message
368
  
369
  tmp_pts <- centroids_pts 
370
  centroids_pts <- remove_errors_list(centroids_pts) #[[!inherits(shps_tiles,"try-error")]]
371
  #centroids_pts <- tmp_pts 
372
  
373
  #plot info: with labels
374
  res_pix <-1200
375
  col_mfrow <- 1 
376
  row_mfrow <- 1
377
  
378
  png(filename=paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep=""),
379
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
380
  
381
  plot(reg_layer)
382
  #Add polygon tiles...
383
  for(i in 1:length(shps_tiles)){
384
    shp1 <- shps_tiles[[i]]
385
    pt <- centroids_pts[[i]]
386
    #if(!inherits(shp1,"try-error")){
387
    #  plot(shp1,add=T,border="blue")
388
    #  #plot(pt,add=T,cex=2,pch=5)
389
    #  label_id <- df_tile_processed$tile_id[i]
390
    #  text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"))
391
    #}
392
    #to be able to run on NEX set font and usePolypath, maybe add option NEX?
393
    if(!inherits(shp1,"try-error")){
394
      plot(shp1,add=T,border="blue",usePolypath = FALSE) #added usePolypath following error on brige and NEX
395
      #plot(pt,add=T,cex=2,pch=5)
396
      label_id <- df_tile_processed$tile_id[i]
397
      text(coordinates(pt)[1],coordinates(pt)[2],labels=i,cex=1.3,font=2,col=c("red"),family="HersheySerif")
398
    }
399

  
400
  }
401
  #title(paste("Tiles ", tile_size,region_name,sep=""))
402
  
403
  dev.off()
404
  
405
  list_outfiles[[counter_fig+1]] <- paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep="")
406
  counter_fig <- counter_fig+1
407
  #this will be changed to be added to data.frame on the fly
408
  r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) 
409

  
410

  
411
  ######################################################
412
  ##### Prepare objet to return ####
413

  
414
  assessment_obj <- list(list_df_assessment_files, df_assessment_figures_files)
415
  names(assessment_obj) <- c("df_assessment_files", "df_assessment_figures_files")
416
  ## Prepare list of files to return...
417
  return(assessment_obj)
418
 
419
}
420
  
421
##################### END OF SCRIPT ######################

Also available in: Unified diff