1 |
7526fb1c
|
Jim Regetz
|
# CHECK PART1
|
2 |
|
|
|
3 |
|
|
# R script for verifying the ASTER GDEM2 tilenames. This script will
|
4 |
|
|
# verify that lower lefthand coordinate of tiles matches filenames
|
5 |
|
|
# (this is how the files are supposed to be named) in both dem.tif and
|
6 |
|
|
# num.tif files.
|
7 |
|
|
# The result of Checks can be found at
|
8 |
|
|
# "/data/project/organisms/DEM/Yuni/documents/check/check_result.pdf"
|
9 |
|
|
#
|
10 |
|
|
#
|
11 |
|
|
# Original author: Natalie Robinson
|
12 |
|
|
# [08-Nov-2011]
|
13 |
|
|
# Edits by Jim and Yuni, focusing on streamlining and improving
|
14 |
|
|
# runtime efficiency. [9-Dec-2011]
|
15 |
|
|
# If you would like to separate the bad-name tiles in the separate
|
16 |
|
|
# folder, please see Nathalie's original script, located at
|
17 |
|
|
# "/data/project/organisms/DEM/asterGdem/R_files/AsterCheck_demAndnum.r."
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
--------------------------------------------------------------------
|
23 |
|
|
library(rgdal)
|
24 |
|
|
|
25 |
|
|
# path to base directory containing the tiles
|
26 |
|
|
aster.dir <- "/data/project/organisms/DEM/asterGdem2"
|
27 |
|
|
|
28 |
|
|
# get list of relevant ASTER GDEM tile names
|
29 |
|
|
aster.list <- list.files(aster.dir, pattern="^ASTGTM2_.*.tif$")
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
# for a given file, return TRUE if file name matches the internally
|
35 |
|
|
# specified lower left corner, otherwise print the bad-named tiles
|
36 |
|
|
# with the correct name.
|
37 |
|
|
|
38 |
|
|
check.name <- function(tile_num.name, path=".", silent=TRUE) {
|
39 |
|
|
# build expected filenameche
|
40 |
|
|
origin <- round(GDALinfo(file.path(path, tile_num.name),
|
41 |
|
|
silent=silent)[c("ll.x", "ll.y")])
|
42 |
|
|
ly <- origin["ll.y"]
|
43 |
|
|
y <- sprintf("%s%02d", if (ly>=0) "N" else "S", abs(ly))
|
44 |
|
|
lx <- origin["ll.x"]
|
45 |
|
|
x <- sprintf("%s%03d", if (lx>=0) "E" else "W", abs(lx))
|
46 |
|
|
|
47 |
|
|
tile.suffix <- substring(tile_num.name, 16)
|
48 |
|
|
expected.name <- paste("ASTGTM2_", y, x, tile.suffix, sep="")
|
49 |
|
|
|
50 |
|
|
# compare to actual filename
|
51 |
|
|
if (tile_num.name==expected.name) {
|
52 |
|
|
TRUE
|
53 |
|
|
} else {
|
54 |
|
|
print ("Bad Name:", tile_num.name, "but supposed to be",expected.name)
|
55 |
|
|
}
|
56 |
|
|
}
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
|
60 |
|
|
title_num.check <- sapply(aster.list, check.name, path=aster.dir)
|
61 |
|
|
bad.data <- data.frame(expected=title_num.check[title_num.check!="TRUE"])
|
62 |
|
|
bad.data #this will print list of bad data
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
-------------------------------------------------------------------
|
71 |
|
|
|
72 |
|
|
# CHECK PART2
|
73 |
|
|
|
74 |
|
|
# R script for calculating the fraction of land mass in each large USGS
|
75 |
|
|
# elevation tile, and comparing this to the fraction of land mass across
|
76 |
|
|
# all ASTER tiles covering the same spatial extent.
|
77 |
|
|
#
|
78 |
|
|
# Note that this script assumes all ASTER pixels that have a value of 0
|
79 |
|
|
# are ocean cells. This is indeed how ocean is masked out in GDEM, but
|
80 |
|
|
# we do not attempt to distinguish these from legitimate land cells that
|
81 |
|
|
# happen to have an elevation of 0 meters. We just assume the latter are
|
82 |
|
|
# rare enough to be inconsequential...
|
83 |
|
|
#
|
84 |
|
|
# Original author: Natalie Robinson
|
85 |
|
|
# [08-Nov-2011]
|
86 |
|
|
# Edits by Jim and Yuni, focusing on streamlining and improving
|
87 |
|
|
# runtime efficiency of the first batch of code (i.e., for
|
88 |
|
|
# N59to81_W20toE19), which can now easily be generalized to a
|
89 |
|
|
# function that can be reused for all other regions. [9-Dec-2011]
|
90 |
|
|
#
|
91 |
|
|
# The result of Checks can be found at
|
92 |
|
|
# "/data/project/organisms/DEM/Yuni/documents/check/check_result.pdf"
|
93 |
|
|
|
94 |
|
|
|
95 |
|
|
library(raster)
|
96 |
|
|
library(rgdal)
|
97 |
|
|
|
98 |
|
|
# path to base directory containing the tiles
|
99 |
|
|
aster.dir <- "/data/project/organisms/DEM/Yuni/Data/aster2"
|
100 |
|
|
usgs.dir <- "/data/project/organisms/DEM/Yuni/Data/GTOPO30/"
|
101 |
|
|
|
102 |
|
|
# get list of relevant ASTER GDEM tile names and list of clipped USGS dem
|
103 |
|
|
aster.clip <- list.files(aster.dir, pattern="^aster2_.*_82N.tif$")
|
104 |
|
|
usgs.clip <- list.files(usgs.dir)
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
compare <- function(aster.tile.names, usgs.tile.name, aster.dir=".", usgs.dir=".") {
|
109 |
|
|
|
110 |
|
|
# summarize all aster tiles
|
111 |
|
|
p.not.land <- t(sapply(aster.tile.names, function(tile.name, dir) {
|
112 |
|
|
elev <- values(raster(file.path(dir, tile.name)))
|
113 |
|
|
p.ocean <- mean(elev==0)
|
114 |
|
|
p.nodata <- mean(elev==-9999)
|
115 |
|
|
c(p.ocean=p.ocean, p.nodata=p.nodata)
|
116 |
|
|
}, dir=aster.dir))
|
117 |
|
|
|
118 |
|
|
# calculate overall proportion of all ASTER pixels containing known land
|
119 |
|
|
# elevations (i.e., neither ocean nor nodata)
|
120 |
|
|
aster.land.fraction <- 1 - mean(rowSums(p.not.land))
|
121 |
|
|
|
122 |
|
|
|
123 |
|
|
# summarize usgs tiles:
|
124 |
|
|
# calculate proportion of land in the corresponding USGS elevation
|
125 |
|
|
# raster, in which all non-land pixels are automatically read in as NA
|
126 |
|
|
usgs <- values(raster(file.path(usgs.dir, usgs.tile.name)))
|
127 |
|
|
usgs.land.fraction <- mean(!is.na(usgs))
|
128 |
|
|
|
129 |
|
|
# compare them:
|
130 |
|
|
# what's the proportional difference between USGS and ASTER?
|
131 |
|
|
diff.aster.usgs <- 1-(usgs.land.fraction/aster.land.fraction)
|
132 |
|
|
|
133 |
|
|
# print the comparison details
|
134 |
|
|
list(
|
135 |
|
|
comparison = c(aster.land.fraction=aster.land.fraction,
|
136 |
|
|
usgs.land.fraction=usgs.land.fraction,
|
137 |
|
|
difference=diff.aster.usgs),
|
138 |
|
|
aster.details = p.not.land
|
139 |
|
|
)
|
140 |
|
|
}
|
141 |
|
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
num.regions <- 9
|
145 |
|
|
comparisons <- lapply(1:num.regions, function(region, aster.dir, usgs.dir) {
|
146 |
|
|
aster.tiles <- aster.clip[region]
|
147 |
|
|
usgs.tile <- usgs.clip[region]
|
148 |
|
|
compare(aster.tiles, usgs.tile, aster.dir, usgs.dir)
|
149 |
|
|
}, aster.dir=aster.dir, usgs.dir=usgs.dir)
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
|
155 |
|
|
--------------------------------------------------------------------
|
156 |
|
|
|
157 |
|
|
# CHECK PART3
|
158 |
|
|
|
159 |
|
|
# R script for calculating the number of tiles for GDEM2 and GDEM1.
|
160 |
|
|
# Quick and rough comparison of DEM tile holdings on eos for ASTER GDEM1
|
161 |
|
|
# vs ASTER GDEM2, based purely on file names
|
162 |
|
|
#
|
163 |
|
|
# Jim Regetz
|
164 |
|
|
# NCEAS
|
165 |
|
|
# Created on 09-Dec-2011
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
|
169 |
|
|
# list all *_dem.tif files (full paths starting from their respective
|
170 |
|
|
# base directories)
|
171 |
|
|
gdem1 <- system('find /data/project/organisms/DEM/asterGdem -name "*_dem.tif"', intern=TRUE)
|
172 |
|
|
gdem2 <- system('find /data/project/organisms/DEM/asterGdem2 -name "*_dem.tif"', intern=TRUE)
|
173 |
|
|
|
174 |
|
|
# extract file names, and remove any duplicates
|
175 |
|
|
# note: getting rid of spurious "._ASTGTM2xxx" files from GDEM2 list
|
176 |
|
|
f1 <- unique(basename(gdem1))
|
177 |
|
|
f2 <- unique(grep("\\._", basename(gdem2), value=TRUE, invert=TRUE))
|
178 |
|
|
|
179 |
|
|
# parse out latitude (always N here) and longitude values
|
180 |
|
|
a1 <- data.frame(
|
181 |
|
|
lat = as.numeric(sub(".*N(..).*", "\\1", f1)),
|
182 |
|
|
lon = sub(".*N..(....).*$", "\\1", f1),
|
183 |
|
|
row.names = f1)
|
184 |
|
|
a2 <- data.frame(
|
185 |
|
|
lat = as.numeric(sub(".*N(..).*", "\\1", f2)),
|
186 |
|
|
lon = sub(".*N..(....).*$", "\\1", f2),
|
187 |
|
|
row.names = f2)
|
188 |
|
|
|
189 |
|
|
# count files by latitude, merge results, and compute differences in
|
190 |
|
|
# counts
|
191 |
|
|
comp <- merge(data.frame(gdem1=table(a1$lat)),
|
192 |
|
|
data.frame(gdem2=table(a2$lat)), by=1, all=TRUE)
|
193 |
|
|
comp[2:3][is.na(comp[2:3])] <- 0
|
194 |
|
|
names(comp) <- c("latitude", "gdem1count", "gdem2count")
|
195 |
|
|
comp$diff <- comp$gdem2count - comp$gdem1count
|
196 |
|
|
|