Revision 41bab185
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
850 | 850 |
|
851 | 851 |
#CALLED FROM MASTER SCRIPT: |
852 | 852 |
|
853 |
# script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script
|
|
854 |
# function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12
|
|
855 |
# function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R"
|
|
856 |
# function_assessment_part2 <- "global_run_scalingup_assessment_part2_01062016.R"
|
|
857 |
# function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R"
|
|
858 |
# source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script
|
|
859 |
# source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script
|
|
860 |
# source(file.path(script_path,function_assessment_part2)) #source all functions used in this script
|
|
861 |
# source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script
|
|
862 |
# |
|
863 |
# ### Parameters and arguments ###
|
|
864 |
# |
|
865 |
# var<-"TMAX" # variable being interpolated
|
|
866 |
# if (var == "TMAX") {
|
|
867 |
# y_var_name <- "dailyTmax"
|
|
868 |
# y_var_month <- "TMax"
|
|
869 |
# }
|
|
870 |
# if (var == "TMIN") {
|
|
871 |
# y_var_name <- "dailyTmin"
|
|
872 |
# y_var_month <- "TMin"
|
|
873 |
# }
|
|
874 |
# |
|
875 |
# #interpolation_method<-c("gam_fusion") #other otpions to be added later
|
|
876 |
# interpolation_method<-c("gam_CAI")
|
|
877 |
# CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs";
|
|
878 |
# #CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
|
|
879 |
# CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
|
|
880 |
# |
|
881 |
# out_region_name<-""
|
|
882 |
# list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)")
|
|
883 |
# |
|
884 |
# #reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia)
|
|
885 |
# #master directory containing the definition of tile size and tiles predicted
|
|
886 |
# in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/"
|
|
887 |
# #/nobackupp6/aguzman4/climateLayers/out_15x45/1982
|
|
888 |
# |
|
889 |
# #region_names <- c("reg23","reg4") #selected region names, #PARAM2
|
|
890 |
# region_name <- c("reg4") #run assessment by region, this is a unique region only
|
|
891 |
# #region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2
|
|
892 |
# interpolation_method <- c("gam_CAI") #PARAM4
|
|
893 |
# out_prefix <- "run_global_analyses_pred_12282015" #PARAM5
|
|
894 |
# #out_dir <- "/nobackupp8/bparmen1/" #PARAM6
|
|
895 |
# out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015"
|
|
896 |
# #out_dir <-paste(out_dir,"_",out_prefix,sep="")
|
|
897 |
# create_out_dir_param <- FALSE #PARAM7
|
|
898 |
# |
|
899 |
# #CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs";
|
|
900 |
# #CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
|
|
901 |
# CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
|
|
902 |
# |
|
903 |
# #list_year_predicted <- 1984:2004
|
|
904 |
# list_year_predicted <- c("2014")
|
|
905 |
# #year_predicted <- list_year_predicted[1]
|
|
906 |
# |
|
907 |
# file_format <- ".tif" #format for mosaiced files #PARAM10
|
|
908 |
# NA_flag_val <- -9999 #No data value, #PARAM11
|
|
909 |
# num_cores <- 6 #number of cores used #PARAM13
|
|
910 |
# plotting_figures <- TRUE #running part2 of assessment to generate figures...
|
|
911 |
# |
|
912 |
# ##Additional parameters used in part 2, some these may be removed as code is simplified
|
|
913 |
# mosaic_plot <- FALSE #PARAM14
|
|
914 |
# day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15
|
|
915 |
# multiple_region <- TRUE #PARAM16
|
|
916 |
# countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17
|
|
917 |
# #countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas
|
|
918 |
# plot_region <- TRUE #PARAM18
|
|
919 |
# threshold_missing_day <- c(367,365,300,200)#PARAM19
|
|
920 |
# |
|
921 |
# year_predicted <- list_year_predicted[1]
|
|
922 |
# in_dir <- out_dir #PARAM 0
|
|
923 |
# #y_var_name <- "dailyTmax" #PARAM1 , already set
|
|
924 |
# #interpolation_method <- c("gam_CAI") #PARAM2, already set
|
|
925 |
# out_suffix <- out_prefix #PARAM3
|
|
926 |
# #out_dir <- #PARAM4, already set
|
|
927 |
# create_out_dir_param <- FALSE #PARAM 5, already created and set
|
|
928 |
# #mosaic_plot <- FALSE #PARAM6
|
|
929 |
# #if daily mosaics NULL then mosaicas all days of the year
|
|
930 |
# #day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7
|
|
931 |
# #CRS_locs_WGS84 already set
|
|
932 |
# proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter
|
|
933 |
# #file_format <- ".rst" #PARAM 9, already set
|
|
934 |
# #NA_flag_val <- -9999 #PARAM 11, already set
|
|
935 |
# #multiple_region <- TRUE #PARAM 12
|
|
936 |
# #countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
|
|
937 |
# #plot_region <- TRUE
|
|
938 |
# #num_cores <- 6 #PARAM 14, already set
|
|
939 |
# #region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
|
|
940 |
# #use previous files produced in step 1a and stored in a data.frame
|
|
941 |
# df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script
|
|
942 |
# df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",")
|
|
943 |
# #threshold_missing_day <- c(367,365,300,200) #PARM18
|
|
944 |
# |
|
945 |
# list_param_run_assessment_plotting <-list(
|
|
946 |
# in_dir,y_var_name, interpolation_method, out_suffix,
|
|
947 |
# out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val,
|
|
948 |
# multiple_region, countries_shp, plot_region, num_cores,
|
|
949 |
# region_name, df_assessment_files_name, threshold_missing_day,year_predicted
|
|
950 |
# )
|
|
951 |
# |
|
952 |
# names(list_param_run_assessment_plotting) <- c(
|
|
953 |
# "in_dir","y_var_name","interpolation_method","out_suffix",
|
|
954 |
# "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val",
|
|
955 |
# "multiple_region","countries_shp","plot_region","num_cores",
|
|
956 |
# "region_name","df_assessment_files_name","threshold_missing_day","year_predicted"
|
|
957 |
# )
|
|
958 |
# |
|
959 |
# #function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R"
|
|
960 |
# #source(file.path(script_path,function_assessment_part2)) #source all functions used in this script
|
|
961 |
# |
|
962 |
# debug(run_assessment_plotting_prediction_fun)
|
|
963 |
# df_assessment_figures_files <-
|
|
964 |
# run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting)
|
|
853 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
854 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
855 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
856 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_01062016.R" |
|
857 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
858 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
859 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
860 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
861 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
862 |
|
|
863 |
### Parameters and arguments ### |
|
864 |
|
|
865 |
var<-"TMAX" # variable being interpolated |
|
866 |
if (var == "TMAX") { |
|
867 |
y_var_name <- "dailyTmax" |
|
868 |
y_var_month <- "TMax" |
|
869 |
} |
|
870 |
if (var == "TMIN") { |
|
871 |
y_var_name <- "dailyTmin" |
|
872 |
y_var_month <- "TMin" |
|
873 |
} |
|
874 |
|
|
875 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
876 |
interpolation_method<-c("gam_CAI") |
|
877 |
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
878 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
879 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
880 |
|
|
881 |
out_region_name<-"" |
|
882 |
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") |
|
883 |
|
|
884 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
885 |
#master directory containing the definition of tile size and tiles predicted |
|
886 |
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
887 |
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
|
888 |
|
|
889 |
#region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
|
890 |
region_name <- c("reg4") #run assessment by region, this is a unique region only |
|
891 |
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
|
892 |
interpolation_method <- c("gam_CAI") #PARAM4 |
|
893 |
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
|
894 |
#out_dir <- "/nobackupp8/bparmen1/" #PARAM6 |
|
895 |
out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015" |
|
896 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
897 |
create_out_dir_param <- FALSE #PARAM7 |
|
898 |
|
|
899 |
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
900 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
901 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
902 |
|
|
903 |
#list_year_predicted <- 1984:2004 |
|
904 |
list_year_predicted <- c("2014") |
|
905 |
#year_predicted <- list_year_predicted[1] |
|
906 |
|
|
907 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
|
908 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
|
909 |
num_cores <- 6 #number of cores used #PARAM13 |
|
910 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
911 |
|
|
912 |
##Additional parameters used in part 2, some these may be removed as code is simplified |
|
913 |
mosaic_plot <- FALSE #PARAM14 |
|
914 |
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
915 |
multiple_region <- TRUE #PARAM16 |
|
916 |
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
917 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
918 |
plot_region <- TRUE #PARAM18 |
|
919 |
threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
920 |
|
|
921 |
year_predicted <- list_year_predicted[1] |
|
922 |
in_dir <- out_dir #PARAM 0 |
|
923 |
#y_var_name <- "dailyTmax" #PARAM1 , already set |
|
924 |
#interpolation_method <- c("gam_CAI") #PARAM2, already set |
|
925 |
out_suffix <- out_prefix #PARAM3 |
|
926 |
#out_dir <- #PARAM4, already set |
|
927 |
create_out_dir_param <- FALSE #PARAM 5, already created and set |
|
928 |
#mosaic_plot <- FALSE #PARAM6 |
|
929 |
#if daily mosaics NULL then mosaicas all days of the year |
|
930 |
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7 |
|
931 |
#CRS_locs_WGS84 already set |
|
932 |
proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter |
|
933 |
#file_format <- ".rst" #PARAM 9, already set |
|
934 |
#NA_flag_val <- -9999 #PARAM 11, already set |
|
935 |
#multiple_region <- TRUE #PARAM 12 |
|
936 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too |
|
937 |
#plot_region <- TRUE |
|
938 |
#num_cores <- 6 #PARAM 14, already set |
|
939 |
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16 |
|
940 |
#use previous files produced in step 1a and stored in a data.frame |
|
941 |
df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script |
|
942 |
df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",") |
|
943 |
#threshold_missing_day <- c(367,365,300,200) #PARM18 |
|
944 |
|
|
945 |
list_param_run_assessment_plotting <-list( |
|
946 |
in_dir,y_var_name, interpolation_method, out_suffix, |
|
947 |
out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val, |
|
948 |
multiple_region, countries_shp, plot_region, num_cores, |
|
949 |
region_name, df_assessment_files_name, threshold_missing_day,year_predicted |
|
950 |
) |
|
951 |
|
|
952 |
names(list_param_run_assessment_plotting) <- c( |
|
953 |
"in_dir","y_var_name","interpolation_method","out_suffix", |
|
954 |
"out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val", |
|
955 |
"multiple_region","countries_shp","plot_region","num_cores", |
|
956 |
"region_name","df_assessment_files_name","threshold_missing_day","year_predicted" |
|
957 |
) |
|
958 |
|
|
959 |
#function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R" |
|
960 |
#source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
961 |
|
|
962 |
debug(run_assessment_plotting_prediction_fun) |
|
963 |
df_assessment_figures_files <- |
|
964 |
run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting) |
|
965 | 965 |
|
966 | 966 |
|
967 | 967 |
|
Also available in: Unified diff
part2 assessment figure production, for testing on bridge