Revision 45813eed
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/GWR_prediction_reg_function.R | ||
---|---|---|
51 | 51 |
layerNames(s_raster_r)<-tab_range$varterm[k] |
52 | 52 |
val_rst[[k]]<-s_raster_r |
53 | 53 |
} |
54 |
s_rst_m<-stack(val_rst) #This a stacked with valid range of values
|
|
54 |
s_rst_m<-stack(val_rst) #This a raster stack with valid range of values
|
|
55 | 55 |
|
56 | 56 |
###Regression part 1: Creating a validation dataset by creating training and testing datasets |
57 | 57 |
|
58 | 58 |
mod_LST <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))] #Match interpolation date and monthly LST average |
59 |
ghcn.subsets[[i]] = transform(ghcn.subsets[[i]],LST = mod_LST) #Add the variable LST to the subset dataset
|
|
59 |
ghcn.subsets[[i]] <- transform(ghcn.subsets[[i]],LST = mod_LST) #Add the variable LST to the subset dataset
|
|
60 | 60 |
#n<-nrow(ghcn.subsets[[i]]) |
61 | 61 |
#ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
62 | 62 |
#nv<-n-ns #create a sample for validation with prop of the rows |
... | ... | |
101 | 101 |
formula5 <- as.formula("y_var~ lat + lon + ELEV_SRTM + Northness_w + Eastness_w + DISTOC + LST", env=.GlobalEnv) |
102 | 102 |
formula6 <- as.formula("y_var~ lat + lon + ELEV_SRTM + Northness_w + Eastness_w + DISTOC + LST + LC1", env=.GlobalEnv) |
103 | 103 |
formula7 <- as.formula("y_var~ lat + lon + ELEV_SRTM + Northness_w + Eastness_w + DISTOC + LST + LC3", env=.GlobalEnv) |
104 |
formula8 <- as.formula("y_var~ lat + lon + ELEV_SRTM + Northness_w + Eastness_w + DISTOC + LST + I(LC1*LC3)", env=.GlobalEnv)
|
|
104 |
formula8 <- as.formula("y_var~ lat + lon + ELEV_SRTM + Northness_w + Eastness_w + DISTOC + LST + I(LST*LC1)", env=.GlobalEnv)
|
|
105 | 105 |
|
106 | 106 |
# bwG <- gwr.sel(tmax~ lon + lat + ELEV_SRTM + Eastness + Northness + DISTOC,data=data_s,gweight=gwr.Gauss, verbose = FALSE) |
107 | 107 |
# gwrG<- gwr(tmax~ lon + lat + ELEV_SRTM + Eastness + Northness + DISTOC, data=data_s, bandwidth=bwG, gweight=gwr.Gauss, hatmatrix=TRUE) |
... | ... | |
168 | 168 |
mod_varn<-t_l |
169 | 169 |
} |
170 | 170 |
#browser() |
171 |
mod_varn <-unique(mod_varn) |
|
171 | 172 |
list_rst<-vector("list",length(mod_varn)) |
172 | 173 |
pos<-match(mod_varn,layerNames(s_rst_m)) #Find column with the current month for instance mm12 |
173 | 174 |
s_rst_mod<-subset(s_rst_m,pos) |
... | ... | |
181 | 182 |
coordinates(s_spdf)<-coords |
182 | 183 |
proj4string(s_spdf)<-CRS #Need to assign coordinates... |
183 | 184 |
|
184 |
|
|
185 | 185 |
#If mod "j" is not a model object |
186 | 186 |
if (inherits(mod,"try-error")) { |
187 | 187 |
|
... | ... | |
234 | 234 |
#If mod "j" is not a model object |
235 | 235 |
if (inherits(mod,"gwr")) { |
236 | 236 |
|
237 |
pred <- gwr(formula1, data_s, bandwidth=bwGm, fit.points =s_spdf,predict=TRUE, se.fit=TRUE,fittedGWRobject=mod) |
|
237 |
pred <- gwr(formula, data_s, bandwidth=bwGm, fit.points =s_spdf,predict=TRUE, se.fit=TRUE,fittedGWRobject=mod) |
|
238 |
#pred <- try(gwr(formula, data_s, bandwidth=bwGm, fit.points =s_spdf,predict=TRUE, se.fit=TRUE,fittedGWRobject=mod)) |
|
238 | 239 |
|
239 | 240 |
pred_gwr[[j]]<-pred #prediction stored in a list |
240 | 241 |
|
Also available in: Unified diff
GWR, raster pred. modification model 8, function