Revision 4719fdd7
Added by Benoit Parmentier over 12 years ago
climate/research/oregon/interpolation/GAM_fusion_function_multisampling.R | ||
---|---|---|
1 |
runGAMFusion <- function(i) { # loop over dates |
|
2 |
|
|
3 |
#date<-strptime(dates[i], "%Y%m%d") # interpolation date being processed |
|
4 |
date<-strptime(sampling_dat$date[i], "%Y%m%d") # interpolation date being processed |
|
5 |
|
|
6 |
month<-strftime(date, "%m") # current month of the date being processed |
|
7 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
8 |
|
|
9 |
#Adding layer LST to the raster stack |
|
10 |
|
|
11 |
pos<-match(LST_month,layerNames(s_raster)) #Find column with the current month for instance mm12 |
|
12 |
r1<-raster(s_raster,layer=pos) #Select layer from stack |
|
13 |
layerNames(r1)<-"LST" |
|
14 |
s_raster<-addLayer(s_raster,r1) #Adding current month |
|
15 |
|
|
16 |
###Regression part 1: Creating a validation dataset by creating training and testing datasets |
|
17 |
|
|
18 |
mod_LST <-ghcn.subsets[[i]][,match(LST_month, names(ghcn.subsets[[i]]))] #Match interpolation date and monthly LST average |
|
19 |
ghcn.subsets[[i]] = transform(ghcn.subsets[[i]],LST = mod_LST) #Add the variable LST to the subset dataset |
|
20 |
#n<-nrow(ghcn.subsets[[i]]) |
|
21 |
#ns<-n-round(n*prop) #Create a sample from the data frame with 70% of the rows |
|
22 |
#nv<-n-ns #create a sample for validation with prop of the rows |
|
23 |
#ind.training <- sample(nrow(ghcn.subsets[[i]]), size=ns, replace=FALSE) #This selects the index position for 70% of the rows taken randomly |
|
24 |
ind.training<-sampling[[i]] |
|
25 |
ind.testing <- setdiff(1:nrow(ghcn.subsets[[i]]), ind.training) |
|
26 |
data_s <- ghcn.subsets[[i]][ind.training, ] #Training dataset currently used in the modeling |
|
27 |
data_v <- ghcn.subsets[[i]][ind.testing, ] #Testing/validation dataset using input sampling |
|
28 |
|
|
29 |
ns<-nrow(data_s) |
|
30 |
nv<-nrow(data_v) |
|
31 |
#i=1 |
|
32 |
date_proc<-sampling_dat$date[i] |
|
33 |
date_proc<-strptime(sampling_dat$date[i], "%Y%m%d") # interpolation date being processed |
|
34 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
35 |
day<-as.integer(strftime(date_proc, "%d")) |
|
36 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
37 |
|
|
38 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
39 |
|
|
40 |
########### |
|
41 |
# STEP 1 - LST 10 year monthly averages |
|
42 |
########### |
|
43 |
|
|
44 |
themolst<-raster(molst,mo) #current month being processed saved in a raster image |
|
45 |
plot(themolst) |
|
46 |
|
|
47 |
########### |
|
48 |
# STEP 2 - Weather station means across same days: Monthly mean calculation |
|
49 |
########### |
|
50 |
|
|
51 |
modst=dst[dst$month==mo,] #Subsetting dataset for the relevant month of the date being processed |
|
52 |
|
|
53 |
########## |
|
54 |
# STEP 3 - get LST at stations |
|
55 |
########## |
|
56 |
|
|
57 |
sta_lola=modst[,c("lon","lat")] #Extracting locations of stations for the current month.. |
|
58 |
|
|
59 |
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
60 |
lookup<-function(r,lat,lon) { |
|
61 |
xy<-project(cbind(lon,lat),proj_str); |
|
62 |
cidx<-cellFromXY(r,xy); |
|
63 |
return(r[cidx]) |
|
64 |
} |
|
65 |
sta_tmax_from_lst=lookup(themolst,sta_lola$lat,sta_lola$lon) #Extracted values of LST for the stations |
|
66 |
|
|
67 |
######### |
|
68 |
# STEP 4 - bias at stations |
|
69 |
######### |
|
70 |
|
|
71 |
sta_bias=sta_tmax_from_lst-modst$TMax; #That is the difference between the monthly LST mean and monthly station mean |
|
72 |
#Added by Benoit |
|
73 |
modst$LSTD_bias<-sta_bias #Adding bias to data frame modst containning the monthly average for 10 years |
|
74 |
|
|
75 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
76 |
png(paste("LST_TMax_scatterplot_",sampling_dat$date[i],"_",sampling_dat$prop[i],"_",sampling_dat$run_samp[i], out_prefix,".png", sep="")) |
|
77 |
plot(modst$TMax,sta_tmax_from_lst,xlab="Station mo Tmax",ylab="LST mo Tmax",main=paste("LST vs TMax for",datelabel,sep=" ")) |
|
78 |
abline(0,1) |
|
79 |
dev.off() |
|
80 |
|
|
81 |
#added by Benoit |
|
82 |
#x<-ghcn.subsets[[i]] #Holds both training and testing for instance 161 rows for Jan 1 |
|
83 |
x<-data_v |
|
84 |
d<-data_s |
|
85 |
|
|
86 |
pos<-match("value",names(d)) #Find column with name "value" |
|
87 |
#names(d)[pos]<-c("dailyTmax") |
|
88 |
names(d)[pos]<-y_var_name |
|
89 |
names(x)[pos]<-y_var_name |
|
90 |
#names(x)[pos]<-c("dailyTmax") |
|
91 |
d$dailyTmax=(as.numeric(d$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
92 |
x$dailyTmax=(as.numeric(x$dailyTmax))/10 #stored as 1/10 degree C to allow integer storage |
|
93 |
pos<-match("station",names(d)) #Find column with name "value" |
|
94 |
names(d)[pos]<-c("id") |
|
95 |
names(x)[pos]<-c("id") |
|
96 |
names(modst)[1]<-c("id") #modst contains the average tmax per month for every stations... |
|
97 |
dmoday=merge(modst,d,by="id") #LOOSING DATA HERE!!! from 113 t0 103 |
|
98 |
xmoday=merge(modst,x,by="id") #LOOSING DATA HERE!!! from 48 t0 43 |
|
99 |
names(dmoday)[4]<-c("lat") |
|
100 |
names(dmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
101 |
names(xmoday)[4]<-c("lat") |
|
102 |
names(xmoday)[5]<-c("lon") #dmoday contains all the the information: BIAS, monn |
|
103 |
|
|
104 |
data_v<-xmoday |
|
105 |
### |
|
106 |
|
|
107 |
#dmoday contains the daily tmax values for training with TMax being the monthly station tmax mean |
|
108 |
#xmoday contains the daily tmax values for validation with TMax being the monthly station tmax mean |
|
109 |
|
|
110 |
# windows() |
|
111 |
#png(paste("LST_TMax_scatterplot_",sampling_dat$date[i],out_prefix,".png", sep="")) |
|
112 |
png(paste("Daily_tmax_monthly_TMax_scatterplot_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
113 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
|
114 |
plot(dailyTmax~TMax,data=dmoday,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in OR") |
|
115 |
#savePlot(paste("Daily_tmax_monthly_TMax_scatterplot_",sampling_dat$date[i],out_prefix,".png", sep=""), type="png") |
|
116 |
#png(paste("LST_TMax_scatterplot_",sampling_dat$date[i],out_prefix,".png", sep="")) |
|
117 |
dev.off() |
|
118 |
|
|
119 |
######## |
|
120 |
# STEP 5 - interpolate bias |
|
121 |
######## |
|
122 |
|
|
123 |
# ?? include covariates like elev, distance to coast, cloud frequency, tree height |
|
124 |
#library(fields) |
|
125 |
#windows() |
|
126 |
quilt.plot(sta_lola,sta_bias,main="Bias at stations",asp=1) |
|
127 |
US(add=T,col="magenta",lwd=2) |
|
128 |
#fitbias<-Tps(bias_xy,sta_bias) #use TPS or krige |
|
129 |
|
|
130 |
#Adding options to use only training stations: 07/11/2012 |
|
131 |
bias_xy=project(as.matrix(sta_lola),proj_str) |
|
132 |
#bias_xy2=project(as.matrix(c(dmoday$lon,dmoday$lat),proj_str) |
|
133 |
if(bias_val==1){ |
|
134 |
sta_bias<-dmoday$LSTD_bias |
|
135 |
bias_xy<-cbind(dmoday$x_OR83M,dmoday$y_OR83M) |
|
136 |
} |
|
137 |
|
|
138 |
fitbias<-Krig(bias_xy,sta_bias,theta=1e5) #use TPS or krige |
|
139 |
#The output is a krig object using fields |
|
140 |
mod9a<-fitbias |
|
141 |
# Creating plot of bias surface and saving it |
|
142 |
#X11() |
|
143 |
png(paste("Bias_surface_LST_TMax_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
144 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) #Create file to write a plot |
|
145 |
datelabel2=format(ISOdate(year,mo,day),"%B ") #added by Benoit, label |
|
146 |
surface(fitbias,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated bias for",datelabel2,sep=" ")) #Plot to file |
|
147 |
#savePlot(paste("Bias_surface_LST_TMax_",sampling_dat$date[i],out_prefix,".png", sep=""), type="png") |
|
148 |
dev.off() #Release the hold to the file |
|
149 |
|
|
150 |
#US(add=T,col="magenta",lwd=2) |
|
151 |
|
|
152 |
########## |
|
153 |
# STEP 7 - interpolate delta across space |
|
154 |
########## |
|
155 |
|
|
156 |
daily_sta_lola=dmoday[,c("lon","lat")] #could be same as before but why assume merge does this - assume not |
|
157 |
daily_sta_xy=project(as.matrix(daily_sta_lola),proj_str) |
|
158 |
daily_delta=dmoday$dailyTmax-dmoday$TMax |
|
159 |
#windows() |
|
160 |
quilt.plot(daily_sta_lola,daily_delta,asp=1,main="Station delta for Jan 15") |
|
161 |
US(add=T,col="magenta",lwd=2) |
|
162 |
#fitdelta<-Tps(daily_sta_xy,daily_delta) #use TPS or krige |
|
163 |
fitdelta<-Krig(daily_sta_xy,daily_delta,theta=1e5) #use TPS or krige |
|
164 |
#Kriging using fields package |
|
165 |
mod9b<-fitdelta |
|
166 |
# Creating plot of bias surface and saving it |
|
167 |
#X11() |
|
168 |
png(paste("Delta_surface_LST_TMax_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
169 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
|
170 |
surface(fitdelta,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated delta for",datelabel,sep=" ")) |
|
171 |
#savePlot(paste("Delta_surface_LST_TMax_",sampling_dat$date[i],out_prefix,".png", sep=""), type="png") |
|
172 |
dev.off() |
|
173 |
#US(add=T,col="magenta",lwd=2) |
|
174 |
# |
|
175 |
|
|
176 |
#### Added by Benoit on 06/19 |
|
177 |
data_s<-dmoday #put the |
|
178 |
data_s$daily_delta<-daily_delta |
|
179 |
|
|
180 |
#data_s$y_var<-daily_delta #y_var is the variable currently being modeled, may be better with BIAS!! |
|
181 |
#data_s$y_var<-data_s$LSTD_bias |
|
182 |
#### Added by Benoit ends |
|
183 |
|
|
184 |
######### |
|
185 |
# STEP 8 - assemble final answer - T=LST+Bias(interpolated)+delta(interpolated) |
|
186 |
######### |
|
187 |
|
|
188 |
bias_rast=interpolate(themolst,fitbias) #interpolation using function from raster package |
|
189 |
#themolst is raster layer, fitbias is "Krig" object from bias surface |
|
190 |
#plot(bias_rast,main="Raster bias") #This not displaying... |
|
191 |
|
|
192 |
#Saving kriged surface in raster images |
|
193 |
data_name<-paste("bias_LST_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
194 |
"_",sampling_dat$run_samp[i],sep="") |
|
195 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
196 |
writeRaster(bias_rast, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
197 |
|
|
198 |
daily_delta_rast=interpolate(themolst,fitdelta) #Interpolation of the bias surface... |
|
199 |
|
|
200 |
#plot(daily_delta_rast,main="Raster Daily Delta") |
|
201 |
|
|
202 |
#Saving kriged surface in raster images |
|
203 |
data_name<-paste("daily_delta_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
204 |
"_",sampling_dat$run_samp[i],sep="") |
|
205 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
206 |
writeRaster(daily_delta_rast, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
207 |
|
|
208 |
tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface as a raster layer... |
|
209 |
#tmax_predicted=themolst+daily_delta_rast+bias_rast #Added by Benoit, why is it -bias_rast |
|
210 |
#plot(tmax_predicted,main="Predicted daily") |
|
211 |
|
|
212 |
#Saving kriged surface in raster images |
|
213 |
data_name<-paste("tmax_predicted_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
214 |
"_",sampling_dat$run_samp[i],sep="") |
|
215 |
raster_name<-paste("fusion_",data_name,out_prefix,".rst", sep="") |
|
216 |
writeRaster(tmax_predicted, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
217 |
|
|
218 |
######## |
|
219 |
# check: assessment of results: validation |
|
220 |
######## |
|
221 |
RMSE<-function(x,y) {return(mean((x-y)^2)^0.5)} |
|
222 |
MAE_fun<-function(x,y) {return(mean(abs(x-y)))} |
|
223 |
#ME_fun<-function(x,y){return(mean(abs(y)))} |
|
224 |
#FIT ASSESSMENT |
|
225 |
sta_pred_data_s=lookup(tmax_predicted,data_s$lat,data_s$lon) |
|
226 |
rmse_fit=RMSE(sta_pred_data_s,data_s$dailyTmax) |
|
227 |
mae_fit=MAE_fun(sta_pred_data_s,data_s$dailyTmax) |
|
228 |
|
|
229 |
sta_pred=lookup(tmax_predicted,data_v$lat,data_v$lon) |
|
230 |
#sta_pred=lookup(tmax_predicted,daily_sta_lola$lat,daily_sta_lola$lon) |
|
231 |
#rmse=RMSE(sta_pred,dmoday$dailyTmax) |
|
232 |
#pos<-match("value",names(data_v)) #Find column with name "value" |
|
233 |
#names(data_v)[pos]<-c("dailyTmax") |
|
234 |
tmax<-data_v$dailyTmax |
|
235 |
#data_v$dailyTmax<-tmax |
|
236 |
rmse=RMSE(sta_pred,tmax) |
|
237 |
mae<-MAE_fun(sta_pred,tmax) |
|
238 |
r2<-cor(sta_pred,tmax)^2 #R2, coef. of var |
|
239 |
me<-mean(sta_pred-tmax) |
|
240 |
|
|
241 |
#plot(sta_pred~dmoday$dailyTmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
242 |
|
|
243 |
png(paste("Predicted_tmax_versus_observed_scatterplot_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
244 |
"_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
|
245 |
plot(sta_pred~tmax,xlab=paste("Actual daily for",datelabel),ylab="Pred daily",main=paste("RMSE=",rmse)) |
|
246 |
abline(0,1) |
|
247 |
#savePlot(paste("Predicted_tmax_versus_observed_scatterplot_",sampling_dat$date[i],out_prefix,".png", sep=""), type="png") |
|
248 |
dev.off() |
|
249 |
#resid=sta_pred-dmoday$dailyTmax |
|
250 |
resid=sta_pred-tmax |
|
251 |
#quilt.plot(daily_sta_lola,resid) |
|
252 |
|
|
253 |
### END OF BRIAN's code |
|
254 |
|
|
255 |
### Added by benoit |
|
256 |
|
|
257 |
###BEFORE GAM prediction the data object must be transformed to SDF |
|
258 |
|
|
259 |
coords<- data_v[,c('x_OR83M','y_OR83M')] |
|
260 |
coordinates(data_v)<-coords |
|
261 |
proj4string(data_v)<-CRS #Need to assign coordinates... |
|
262 |
coords<- data_s[,c('x_OR83M','y_OR83M')] |
|
263 |
coordinates(data_s)<-coords |
|
264 |
proj4string(data_s)<-CRS #Need to assign coordinates.. |
|
265 |
|
|
266 |
ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging... |
|
267 |
nv<-nrow(data_v) |
|
268 |
|
|
269 |
###GAM PREDICTION |
|
270 |
|
|
271 |
#data_s$y_var<-data_s$dailyTmax #This shoudl be changed for any variable!!! |
|
272 |
#data_v$y_var<-data_v$dailyTmax |
|
273 |
data_v$y_var<-data_v[[y_var_name]] |
|
274 |
data_s$y_var<-data_s[[y_var_name]] |
|
275 |
|
|
276 |
#Model and response variable can be changed without affecting the script |
|
277 |
|
|
278 |
formula1 <- as.formula("y_var ~ s(lat) + s(lon) + s(ELEV_SRTM)", env=.GlobalEnv) |
|
279 |
formula2 <- as.formula("y_var~ s(lat,lon)+ s(ELEV_SRTM)", env=.GlobalEnv) |
|
280 |
formula3 <- as.formula("y_var~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC)", env=.GlobalEnv) |
|
281 |
formula4 <- as.formula("y_var~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST)", env=.GlobalEnv) |
|
282 |
formula5 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)", env=.GlobalEnv) |
|
283 |
formula6 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC1)", env=.GlobalEnv) |
|
284 |
formula7 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC3)", env=.GlobalEnv) |
|
285 |
formula8 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(LST,LC1)", env=.GlobalEnv) |
|
286 |
|
|
287 |
#formula1 <- as.formula("y_var ~ s(lat,lon,ELEV_SRTM)", env=.GlobalEnv) |
|
288 |
#formula2 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(CANHEIGHT)", env=.GlobalEnv) |
|
289 |
#formula3 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,CANHEIGHT)", env=.GlobalEnv) |
|
290 |
#formula4 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC1)", env=.GlobalEnv) |
|
291 |
#formula5 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC3)", env=.GlobalEnv) |
|
292 |
#formula6 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC1)", env=.GlobalEnv) |
|
293 |
#formula7 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC3)", env=.GlobalEnv) |
|
294 |
#formula8 <- as.formula("y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST,LC1) + s(LST,LC3)", env=.GlobalEnv) |
|
295 |
|
|
296 |
mod1<- try(gam(formula1, data=data_s)) |
|
297 |
mod2<- try(gam(formula2, data=data_s)) #modified nesting....from 3 to 2 |
|
298 |
mod3<- try(gam(formula3, data=data_s)) |
|
299 |
mod4<- try(gam(formula4, data=data_s)) |
|
300 |
mod5<- try(gam(formula5, data=data_s)) |
|
301 |
mod6<- try(gam(formula6, data=data_s)) |
|
302 |
mod7<- try(gam(formula7, data=data_s)) |
|
303 |
mod8<- try(gam(formula8, data=data_s)) |
|
304 |
|
|
305 |
# mod1<- try(gam(formula1, data=data_s)) |
|
306 |
# mod2<- try(gam(formula2, data=data_s)) #modified nesting....from 3 to 2 |
|
307 |
# mod3<- try(gam(y_var~ s(lat) + s (lon) + s (ELEV_SRTM) + s (Northness)+ s (Eastness) + s(DISTOC), data=data_s)) |
|
308 |
# mod4<- try(gam(y_var~ s(lat) + s (lon) + s(ELEV_SRTM) + s(Northness) + s (Eastness) + s(DISTOC) + s(LST), data=data_s)) |
|
309 |
# mod5<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST), data=data_s)) |
|
310 |
# mod6<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC1), data=data_s)) |
|
311 |
# mod7<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST)+s(LC3), data=data_s)) |
|
312 |
# mod8<- try(gam(y_var~ s(lat,lon) +s(ELEV_SRTM) + s(Northness,Eastness) + s(DISTOC) + s(LST) + s(LC1,LC3), data=data_s)) |
|
313 |
# |
|
314 |
#Added |
|
315 |
#tmax_predicted=themolst+daily_delta_rast-bias_rast #Final surface?? but daily_rst |
|
316 |
|
|
317 |
### Added by benoit |
|
318 |
#Store results using TPS |
|
319 |
j=nmodels+1 |
|
320 |
results_RMSE[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
321 |
results_RMSE[2]<- ns #number of stations used in the training stage |
|
322 |
results_RMSE[3]<- "RMSE" |
|
323 |
|
|
324 |
results_RMSE[j+3]<- rmse #Storing RMSE for the model j |
|
325 |
|
|
326 |
results_RMSE_f[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
327 |
results_RMSE_f[2]<- ns #number of stations used in the training stage |
|
328 |
results_RMSE_f[3]<- "RMSE_f" |
|
329 |
results_RMSE_f[j+3]<- rmse_fit #Storing RMSE for the model j |
|
330 |
|
|
331 |
results_MAE_f[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
332 |
results_MAE_f[2]<- ns #number of stations used in the training stage |
|
333 |
results_MAE_f[3]<- "RMSE_f" |
|
334 |
results_MAE_f[j+3]<- mae_fit #Storing RMSE for the model j |
|
335 |
|
|
336 |
results_MAE[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
337 |
results_MAE[2]<- ns #number of stations used in the training stage |
|
338 |
results_MAE[3]<- "MAE" |
|
339 |
results_MAE[j+3]<- mae #Storing RMSE for the model j |
|
340 |
|
|
341 |
results_ME[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
342 |
results_ME[2]<- ns #number of stations used in the training stage |
|
343 |
results_ME[3]<- "ME" |
|
344 |
results_ME[j+3]<- me #Storing RMSE for the model j |
|
345 |
|
|
346 |
results_R2[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
347 |
results_R2[2]<- ns #number of stations used in the training stage |
|
348 |
results_R2[3]<- "R2" |
|
349 |
results_R2[j+3]<- r2 #Storing RMSE for the model j |
|
350 |
|
|
351 |
#ns<-nrow(data_s) #This is added to because some loss of data might have happened because of the averaging... |
|
352 |
#nv<-nrow(data_v) |
|
353 |
|
|
354 |
|
|
355 |
for (j in 1:nmodels){ |
|
356 |
|
|
357 |
##Model assessment: specific diagnostic/metrics for GAM |
|
358 |
|
|
359 |
name<-paste("mod",j,sep="") #modj is the name of The "j" model (mod1 if j=1) |
|
360 |
mod<-get(name) #accessing GAM model ojbect "j" |
|
361 |
|
|
362 |
#If mod "j" is not a model object |
|
363 |
if (inherits(mod,"try-error")) { |
|
364 |
results_AIC[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
365 |
results_AIC[2]<- ns #number of stations used in the training stage |
|
366 |
results_AIC[3]<- "AIC" |
|
367 |
results_AIC[j+3]<- NA |
|
368 |
|
|
369 |
results_GCV[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
370 |
results_GCV[2]<- ns #number of stations used in the training |
|
371 |
results_GCV[3]<- "GCV" |
|
372 |
results_GCV[j+3]<- NA |
|
373 |
|
|
374 |
results_DEV[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
375 |
results_DEV[2]<- ns #number of stations used in the training stage |
|
376 |
results_DEV[3]<- "DEV" |
|
377 |
results_DEV[j+3]<- NA |
|
378 |
|
|
379 |
results_RMSE_f[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
380 |
results_RMSE_f[2]<- ns #number of stations used in the training stage |
|
381 |
results_RMSE_f[3]<- "RSME_f" |
|
382 |
results_RMSE_f[j+3]<- NA |
|
383 |
|
|
384 |
results_MAE_f[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
385 |
results_MAE_f[2]<- ns #number of stations used in the training stage |
|
386 |
results_MAE_f[3]<- "MAE_f" |
|
387 |
results_MAE_f[j+3]<-NA |
|
388 |
|
|
389 |
results_RMSE[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
390 |
results_RMSE[2]<- ns #number of stations used in the training stage |
|
391 |
results_RMSE[3]<- "RMSE" |
|
392 |
results_RMSE[j+3]<- NA #Storing RMSE for the model j |
|
393 |
results_MAE[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
394 |
results_MAE[2]<- ns #number of stations used in the training stage |
|
395 |
results_MAE[3]<- "MAE" |
|
396 |
results_MAE[j+3]<- NA #Storing MAE for the model j |
|
397 |
results_ME[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
398 |
results_ME[2]<- ns #number of stations used in the training stage |
|
399 |
results_ME[3]<- "ME" |
|
400 |
results_ME[j+3]<- NA #Storing ME for the model j |
|
401 |
results_R2[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
402 |
results_R2[2]<- ns #number of stations used in the training stage |
|
403 |
results_R2[3]<- "R2" |
|
404 |
|
|
405 |
|
|
406 |
results_R2[j+3]<- NA #Storing R2 for the model j |
|
407 |
|
|
408 |
} |
|
409 |
|
|
410 |
#If mod is a modelobject |
|
411 |
|
|
412 |
#If mod "j" is not a model object |
|
413 |
if (inherits(mod,"gam")) { |
|
414 |
|
|
415 |
results_AIC[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
416 |
results_AIC[2]<- ns #number of stations used in the training stage |
|
417 |
results_AIC[3]<- "AIC" |
|
418 |
results_AIC[j+3]<- AIC (mod) |
|
419 |
|
|
420 |
results_GCV[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
421 |
results_GCV[2]<- ns #number of stations used in the training |
|
422 |
results_GCV[3]<- "GCV" |
|
423 |
results_GCV[j+3]<- mod$gcv.ubre |
|
424 |
|
|
425 |
results_DEV[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
426 |
results_DEV[2]<- ns #number of stations used in the training stage |
|
427 |
results_DEV[3]<- "DEV" |
|
428 |
results_DEV[j+3]<- mod$deviance |
|
429 |
|
|
430 |
y_var_fit= mod$fit |
|
431 |
|
|
432 |
results_RMSE_f[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
433 |
results_RMSE_f[2]<- ns #number of stations used in the training stage |
|
434 |
results_RMSE_f[3]<- "RSME_f" |
|
435 |
#results_RMSE_f[j+3]<- sqrt(sum((y_var_fit-data_s$y_var)^2)/ns) |
|
436 |
results_RMSE_f[j+3]<-sqrt(mean(mod$residuals^2,na.rm=TRUE)) |
|
437 |
|
|
438 |
results_MAE_f[1]<- sampling_dat$date[i] #storing the interpolation sampling_dat$date in the first column |
|
439 |
results_MAE_f[2]<- ns #number of stations used in the training stage |
|
440 |
results_MAE_f[3]<- "MAE_f" |
|
441 |
#results_MAE_f[j+3]<-sum(abs(y_var_fit-data_s$y_var))/ns |
|
442 |
results_MAE_f[j+3]<-mean(abs(mod$residuals),na.rm=TRUE) |
|
443 |
|
|
444 |
##Model assessment: general diagnostic/metrics |
|
445 |
##validation: using the testing data |
|
446 |
if (predval==1) { |
|
447 |
|
|
448 |
##Model assessment: specific diagnostic/metrics for GAM |
|
449 |
|
|
450 |
name<-paste("mod",j,sep="") #modj is the name of The "j" model (mod1 if j=1) |
|
451 |
mod<-get(name) #accessing GAM model ojbect "j" |
|
452 |
|
|
453 |
s_sgdf<-as(s_raster,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
|
454 |
|
|
455 |
rpred<- predict(mod, newdata=s_sgdf, se.fit = TRUE) #Using the coeff to predict new values. |
|
456 |
y_pred<-rpred$fit |
|
457 |
raster_pred<-r1 |
|
458 |
layerNames(raster_pred)<-"y_pred" |
|
459 |
values(raster_pred)<-as.numeric(y_pred) |
|
460 |
data_name<-paste("predicted_mod",j,"_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
461 |
"_",sampling_dat$run_samp[i],sep="") |
|
462 |
raster_name<-paste("GAM_",data_name,out_prefix,".rst", sep="") |
|
463 |
writeRaster(raster_pred, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
464 |
#writeRaster(r2, filename=raster_name,overwrite=TRUE) #Writing the data in a raster file format...(IDRISI) |
|
465 |
|
|
466 |
pred_sgdf<-as(raster_pred,"SpatialGridDataFrame") #Conversion to spatial grid data frame |
|
467 |
#rpred_val_s <- overlay(raster_pred,data_s) #This overlays the kriged surface tmax and the location of weather stations |
|
468 |
|
|
469 |
rpred_val_s <- overlay(pred_sgdf,data_s) #This overlays the kriged surface tmax and the location of weather stations |
|
470 |
rpred_val_v <- overlay(pred_sgdf,data_v) #This overlays the kriged surface tmax and the location of weather stations |
|
471 |
|
|
472 |
pred_mod<-paste("pred_mod",j,sep="") |
|
473 |
#Adding the results back into the original dataframes. |
|
474 |
data_s[[pred_mod]]<-rpred_val_s$y_pred |
|
475 |
|
|
476 |
data_v[[pred_mod]]<-rpred_val_v$y_pred |
|
477 |
|
|
478 |
#Model assessment: RMSE and then krig the residuals....! |
|
479 |
|
|
480 |
res_mod_s<- data_s$y_var - data_s[[pred_mod]] #Residuals from kriging training |
|
481 |
res_mod_v<- data_v$y_var - data_v[[pred_mod]] #Residuals from kriging validation |
|
482 |
|
|
483 |
} |
|
484 |
|
|
485 |
if (predval==0) { |
|
486 |
|
|
487 |
y_mod<- predict(mod, newdata=data_v, se.fit = TRUE) #Using the coeff to predict new values. |
|
488 |
|
|
489 |
pred_mod<-paste("pred_mod",j,sep="") |
|
490 |
#Adding the results back into the original dataframes. |
|
491 |
data_s[[pred_mod]]<-as.numeric(mod$fit) |
|
492 |
data_v[[pred_mod]]<-as.numeric(y_mod$fit) |
|
493 |
|
|
494 |
#Model assessment: RMSE and then krig the residuals....! |
|
495 |
|
|
496 |
res_mod_s<- data_s$y_var - data_s[[pred_mod]] #Residuals from kriging training |
|
497 |
res_mod_v<- data_v$y_var - data_v[[pred_mod]] #Residuals from kriging validation |
|
498 |
} |
|
499 |
|
|
500 |
####ADDED ON JULY 20th |
|
501 |
res_mod<-res_mod_v |
|
502 |
|
|
503 |
#RMSE_mod <- sqrt(sum(res_mod^2)/nv) #RMSE FOR REGRESSION STEP 1: GAM |
|
504 |
RMSE_mod<- sqrt(mean(res_mod^2,na.rm=TRUE)) |
|
505 |
#MAE_mod<- sum(abs(res_mod),na.rm=TRUE)/(nv-sum(is.na(res_mod))) #MAE from kriged surface validation |
|
506 |
MAE_mod<- mean(abs(res_mod), na.rm=TRUE) |
|
507 |
#ME_mod<- sum(res_mod,na.rm=TRUE)/(nv-sum(is.na(res_mod))) #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
508 |
ME_mod<- mean(res_mod,na.rm=TRUE) #ME, Mean Error or bias FOR REGRESSION STEP 1: GAM |
|
509 |
#R2_mod<- cor(data_v$y_var,data_v[[pred_mod]])^2 #R2, coef. of var FOR REGRESSION STEP 1: GAM |
|
510 |
R2_mod<- cor(data_v$y_var,data_v[[pred_mod]], use="complete")^2 |
|
511 |
results_RMSE[1]<- sampling_dat$date[i] #storing the interpolation sampling_dat$date in the first column |
|
512 |
results_RMSE[2]<- ns #number of stations used in the training stage |
|
513 |
results_RMSE[3]<- "RMSE" |
|
514 |
results_RMSE[j+3]<- RMSE_mod #Storing RMSE for the model j |
|
515 |
results_MAE[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
516 |
results_MAE[2]<- ns #number of stations used in the training stage |
|
517 |
results_MAE[3]<- "MAE" |
|
518 |
results_MAE[j+3]<- MAE_mod #Storing MAE for the model j |
|
519 |
results_ME[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
520 |
results_ME[2]<- ns #number of stations used in the training stage |
|
521 |
results_ME[3]<- "ME" |
|
522 |
results_ME[j+3]<- ME_mod #Storing ME for the model j |
|
523 |
results_R2[1]<- sampling_dat$date[i] #storing the interpolation dates in the first column |
|
524 |
results_R2[2]<- ns #number of stations used in the training stage |
|
525 |
results_R2[3]<- "R2" |
|
526 |
results_R2[j+3]<- R2_mod #Storing R2 for the model j |
|
527 |
|
|
528 |
#Saving residuals and prediction in the dataframes: tmax predicted from GAM |
|
529 |
|
|
530 |
name2<-paste("res_mod",j,sep="") |
|
531 |
data_v[[name2]]<-as.numeric(res_mod_v) |
|
532 |
data_s[[name2]]<-as.numeric(res_mod_s) |
|
533 |
#end of loop calculating RMSE |
|
534 |
} |
|
535 |
} |
|
536 |
|
|
537 |
#if (i==length(dates)){ |
|
538 |
|
|
539 |
#Specific diagnostic measures related to the testing datasets |
|
540 |
|
|
541 |
results_table_RMSE<-as.data.frame(results_RMSE) |
|
542 |
results_table_MAE<-as.data.frame(results_MAE) |
|
543 |
results_table_ME<-as.data.frame(results_ME) |
|
544 |
results_table_R2<-as.data.frame(results_R2) |
|
545 |
results_table_RMSE_f<-as.data.frame(results_RMSE_f) |
|
546 |
results_table_MAE_f<-as.data.frame(results_MAE_f) |
|
547 |
|
|
548 |
results_table_AIC<-as.data.frame(results_AIC) |
|
549 |
results_table_GCV<-as.data.frame(results_GCV) |
|
550 |
results_table_DEV<-as.data.frame(results_DEV) |
|
551 |
|
|
552 |
tb_metrics1<-rbind(results_table_RMSE,results_table_MAE, results_table_ME, results_table_R2,results_table_RMSE_f,results_table_MAE_f) # |
|
553 |
tb_metrics2<-rbind(results_table_AIC,results_table_GCV, results_table_DEV) |
|
554 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8","mod9") |
|
555 |
colnames(tb_metrics1)<-cname |
|
556 |
cname<-c("dates","ns","metric","mod1", "mod2","mod3", "mod4", "mod5", "mod6", "mod7","mod8") |
|
557 |
colnames(tb_metrics2)<-cname |
|
558 |
#colnames(results_table_RMSE)<-cname |
|
559 |
#colnames(results_table_RMSE_f)<-cname |
|
560 |
#tb_diagnostic1<-results_table_RMSE #measures of validation |
|
561 |
#tb_diagnostic2<-results_table_RMSE_f #measures of fit |
|
562 |
|
|
563 |
#write.table(tb_diagnostic1, file= paste(path,"/","results_fusion_Assessment_measure1",out_prefix,".txt",sep=""), sep=",") |
|
564 |
|
|
565 |
#} |
|
566 |
print(paste(sampling_dat$date[i],"processed")) |
|
567 |
# end of the for loop1 |
|
568 |
mod_obj<-list(mod1,mod2,mod3,mod4,mod5,mod6,mod7,mod8,mod9a,mod9b) |
|
569 |
names(mod_obj)<-c("mod1","mod2","mod3","mod4","mod5","mod6","mod7","mod8","mod9a","mod9b") |
|
570 |
#results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2) |
|
571 |
results_list<-list(data_s,data_v,tb_metrics1,tb_metrics2,mod_obj) |
|
572 |
names(results_list)<-c("data_s","data_v","tb_metrics1","tb_metrics2","mod_obj") |
|
573 |
save(results_list,file= paste(path,"/","results_list_metrics_objects_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
574 |
"_",sampling_dat$run_samp[i],out_prefix,".RData",sep="")) |
|
575 |
return(results_list) |
|
576 |
#return(tb_diagnostic1) |
|
577 |
} |
Also available in: Unified diff
GAM FUSION, multi sampling function initial commit