Project

General

Profile

« Previous | Next » 

Revision 47c79dcd

Added by Benoit Parmentier almost 10 years ago

splitting code for script part global assessment of accuracy, removing functions

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R
5 5
#Part 1 create summary tables and inputs for figure in part 2 and part 3.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 01/28/2015            
8
#MODIFIED ON: 01/20/2015            
9 9
#Version: 4
10 10
#PROJECT: Environmental Layers project  
11 11
#TO DO:
......
55 55
  
56 56
#### FUNCTION USED IN SCRIPT
57 57
  
58
function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
59
function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
58
#function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
59
#function_analyses_paper2 <-"multi_timescales_paper_interpolation_functions_08132014.R"
60
#function_analyses_paper1 <-"contribution_of_covariates_paper_interpolation_functions_07182014.R" #first interp paper
61
function_assessment_part1 <-"global_run_scalingup_assessment_part1_01202015.R"
60 62
  
61
load_obj <- function(f)
62
{
63
  env <- new.env()
64
  nm <- load(f, env)[1]
65
  env[[nm]]
66
}
67
  
68
create_dir_fun <- function(out_dir,out_suffix){
69
  if(!is.null(out_suffix)){
70
    out_name <- paste("output_",out_suffix,sep="")
71
    out_dir <- file.path(out_dir,out_name)
72
  }
73
  #create if does not exists: create the output dir as defined 
74
  if(!file.exists(out_dir)){
75
    dir.create(out_dir)
76
  }
77
  return(out_dir)
78
}
79

  
80
extract_list_from_list_obj<-function(obj_list,list_name){
81
  library(plyr)
82
  
83
  #Create a list of an object from a given list of object using a name prodived as input
84
  
85
  list_tmp<-vector("list",length(obj_list))
86
  for (i in 1:length(obj_list)){
87
    tmp <- obj_list[[i]][[list_name]] #double bracket to return data.frame
88
    list_tmp[[i]] <- as.data.frame(tmp) #deal with spdf...
89
  }
90
  return(list_tmp) #this is  a data.frame
91
}
92

  
93
#This extract a data.frame object from raster prediction obj and combine them in one data.frame 
94
extract_from_list_obj<-function(obj_list,list_name){
95
  #extract object from list of list. This useful for raster_prediction_obj
96
  library(plyr)
97
  list_tmp<-vector("list",length(obj_list))
98
  for (i in 1:length(obj_list)){
99
    tmp <- obj_list[[i]]
100
    if(inherits(tmp,"try-error")){     
101
      print(paste("no model generated or error in list",sep=" ")) #change message for any model type...
102
      list_tmp[[i]] <- NULL #double bracket to return data.frame
103
    }else{
104
      #tmp<-obj_list[[i]][[list_name]] #double bracket to return data.frame
105
      list_tmp[[i]] <- as.data.frame(tmp[[list_name]])
106
    }
107
    #
108
    #tmp<-obj_list[[i]][[list_name]] #double bracket to return data.frame
109
    #list_tmp[[i]]<- as.data.frame(tmp) #if spdf
110
  }
111
  #
112
  #list_tmp <-list_tmp[!is.null(list_tmp)]
113
  list_tmp <- list_tmp[unlist(lapply(list_tmp,FUN=function(x){!is.null(x)}))]
114

  
115
  tb_list_tmp<-do.call(rbind.fill,list_tmp) #long rownames
116
  #tb_list_tmp<-do.call(rbind,list_tmp) #long rownames 
117
  return(tb_list_tmp) #this is  a data.frame
118
}
119

  
120
## Function to mosaic modis or other raster images
121

  
122
mosaic_m_raster_list<-function(j,list_param){
123
  #This functions returns a subset of tiles from the modis grid.
124
  #Arguments: modies grid tile,list of tiles
125
  #Output: spatial grid data frame of the subset of tiles
126
  #Note that rasters are assumed to be in the same projection system!!
127
  
128
  #rast_list<-vector("list",length(mosaic_list))
129
  #for (i in 1:length(mosaic_list)){  
130
  # read the individual rasters into a list of RasterLayer objects
131
  # this may be changed so that it is not read in the memory!!!
132
  
133
  #parse output...
134
  
135
  #j<-list_param$j
136
  mosaic_list<-list_param$mosaic_list
137
  out_path<-list_param$out_path
138
  out_names<-list_param$out_rastnames
139
  file_format <- list_param$file_format
140
  NA_flag_val <- list_param$NA_flag_val
141
  out_suffix <- list_param$out_suffix
142
  ## Start
143
  
144
  if(class(mosaic_list[[j]])=="list"){
145
    m_list <- unlist(mosaic_list[[j]])
146
  }
147
  input.rasters <- lapply(m_list, raster)
148
  mosaiced_rast<-input.rasters[[1]]
149
  
150
  for (k in 2:length(input.rasters)){
151
    mosaiced_rast<-mosaic(mosaiced_rast,input.rasters[[k]], fun=mean)
152
    #mosaiced_rast<-mosaic(mosaiced_rast,raster(input.rasters[[k]]), fun=mean)
153
  }
154
  
155
  data_name<-paste("mosaiced_",sep="") #can add more later...
156
  #raster_name<-paste(data_name,out_names[j],".tif", sep="")
157
  raster_name<-paste(data_name,out_names[j],file_format, sep="")
158
  
159
  writeRaster(mosaiced_rast, NAflag=NA_flag_val,filename=file.path(out_path,raster_name),overwrite=TRUE)  
160
  #Writing the data in a raster file format...  
161
  rast_list<-file.path(out_path,raster_name)
162
  
163
  ## The Raster and rgdal packages write temporary files on the disk when memory is an issue. This can potential build up
164
  ## in long  loops and can fill up hard drives resulting in errors. The following  sections removes these files 
165
  ## as they are created in the loop. This code section  can be transformed into a "clean-up function later on
166
  ## Start remove
167
  #tempfiles<-list.files(tempdir(),full.names=T) #GDAL transient files are not removed
168
  #files_to_remove<-grep(out_suffix,tempfiles,value=T) #list files to remove
169
  #if(length(files_to_remove)>0){
170
  #  file.remove(files_to_remove)
171
  #}
172
  #now remove temp files from raster package located in rasterTmpDir
173
  removeTmpFiles(h=0) #did not work if h is not set to 0
174
  ## end of remove section
175
  
176
  return(rast_list)
177
}
178

  
179
### Function:
180
pred_data_info_fun <- function(k,list_data,pred_mod,sampling_dat_info){
181
    #Summarizing input info from sampling and df used in training/testing
182
      
183
  data <- list_data[[k]]
184
  sampling_dat <- sampling_dat_info[[k]]
185
  if(data!="try-error"){
186
    n <- nrow(data)
187
    n_mod <- vector("numeric",length(pred_mod))
188
    for(j in 1:length(pred_mod)){
189
      n_mod[j] <- sum(!is.na(data[[pred_mod[j]]]))
190
    }
191
    n <- rep(n,length(pred_mod))
192
    sampling_dat <- sampling_dat[rep(seq_len(nrow(sampling_dat)), each=length(pred_mod)),]
193
    row.names(sampling_dat) <- NULL
194
    df_n <- data.frame(n,n_mod,pred_mod)
195
    df_n <- cbind(df_n,sampling_dat)
196
  }else{        
197
    n <- rep(NA,length(pred_mod))
198
    n_mod <- vector("numeric",length(pred_mod))
199
    n_mod <- rep(NA,length(pred_mod))
200
    df_n <- data.frame(n,n_mod,pred_mod)
201
    sampling_dat <- sampling_dat[rep(seq_len(nrow(sampling_dat)), each=length(pred_mod)),]
202
    row.names(sampling_dat) <- NULL
203
    df_n <- data.frame(n,n_mod,pred_mod)
204
    df_n <- cbind(df_n,sampling_dat)
205
  
206
  }  
207
  return(df_n)
208
}
209

  
210
extract_daily_training_testing_info <- function(i,list_param){
211
  #This function extracts training and testing information from the raster object produced for each tile
212
  #This is looping through tiles...
213
  ##Functions used
214
  #Defined outside this script:
215
  #pred_data_info_fun
216
  
217
  ##### Parse parameters and arguments ####
218
  
219
  raster_obj_file <- list_param$list_raster_obj_files[i]
220
  use_month <- list_param$use_month
221
  use_day <- list_param$use_day
222
  tile_id <- list_param$list_names_tile_id[i]
223
  
224
  ### Start script ##
225
  
226
  raster_obj <- load_obj(unlist(raster_obj_file)) #may not need unlist
227
  nb_models <- length((raster_obj$clim_method_mod_obj[[1]]$formulas))
228
  pred_mod <- paste("mod",c(1:nb_models,"_kr"),sep="")
229
  #we are assuming no monthly hold out...
230
  #we are assuming only one specific daily prop?
231
  nb_models <- length(pred_mod)
232
  #names(raster_obj$method_mod_obj[[1]])
233
  var_interp <- unique(raster_obj$tb_diagnostic_s$var_interp)
234
  method_interp <- unique(raster_obj$tb_diagnostic_s$method_interp)
235
  
236
  if(use_day==TRUE){
237
    
238
    list_data_day_v <- try(extract_list_from_list_obj(raster_obj$validation_mod_obj,"data_v"))
239
    list_data_day_s <- try(extract_list_from_list_obj(raster_obj$validation_mod_obj,"data_s"))
240
    sampling_dat_day <- extract_list_from_list_obj(raster_obj$method_mod_obj,"daily_dev_sampling_dat")
241
    #debug(pred_data_info_fun)
242
    #list_pred_data_day_s_info <- pred_data_info_fun(1,list_data=list_data_day_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day)
243
    list_pred_data_day_s_info <- lapply(1:length(sampling_dat_day),FUN=pred_data_info_fun,
244
           list_data=list_data_day_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day)
245
    list_pred_data_day_v_info <- lapply(1:length(sampling_dat_day),FUN=pred_data_info_fun,
246
           list_data=list_data_day_v,pred_mod=pred_mod,sampling_dat_info=sampling_dat_day)
247
    pred_data_day_s_info <- do.call(rbind,list_pred_data_day_s_info)
248
    pred_data_day_v_info <- do.call(rbind,list_pred_data_day_v_info)
249
    pred_data_day_s_info$training <- rep(1,nrow(pred_data_day_s_info)) 
250
    pred_data_day_v_info$training <- rep(0,nrow(pred_data_day_v_info)) 
251
    pred_data_day_info <-rbind(pred_data_day_v_info,pred_data_day_s_info)
252
    
253
    pred_data_day_info$method_interp <- rep(method_interp,nrow(pred_data_day_info)) 
254
    pred_data_day_info$var_interp <- rep(var_interp,nrow(pred_data_day_info)) 
255
    pred_data_day_info$tile_id <- rep(tile_id,nrow(pred_data_day_info))                                       
256
  }
257
  
258
  if(use_month==TRUE){
259
    
260
    list_data_month_s <- try(extract_list_from_list_obj(raster_obj$validation_mod_month_obj,"data_s"))
261
    list_data_month_v <- try(extract_list_from_list_obj(raster_obj$validation_mod_month_obj,"data_v"))
262
    sampling_dat_month <- extract_list_from_list_obj(raster_obj$clim_method_mod_obj,"sampling_month_dat")
263
    list_pred_data_month_s_info <- lapply(1:length(sampling_dat_month),FUN=pred_data_info_fun,
264
           list_data=list_data_month_s,pred_mod=pred_mod,sampling_dat_info=sampling_dat_month)
265
    list_pred_data_month_v_info <- mclapply(1:length(sampling_dat_month),FUN=pred_data_info_fun,
266
           list_data=list_data_month_v,pred_mod=pred_mod,sampling_dat_info=sampling_dat_month,mc.preschedule=FALSE,mc.cores = 1)
267
    #Note for list_pred_data_month_v_info it will be try-error when there is no holdout.
268
    #combine training and testing later? also combined with accuracy
269
    pred_data_month_s_info <- do.call(rbind,list_pred_data_month_s_info)
270
    #Adding a column for training: if data item used as training then it is 1
271
    pred_data_month_s_info$training <- try(rep(1,nrow(pred_data_month_s_info)))
272

  
273
    #Remove try-error??
274
    list_pred_data_month_v_info_tmp <- remove_from_list_fun(list_pred_data_month_v_info)
275
    list_pred_data_month_v_info <- list_pred_data_month_v_info_tmp$list
276
    if (length(list_pred_data_month_v_info)>0){
277
      pred_data_month_v_info <- do.call(rbind,list_pred_data_month_v_info)
278
      pred_data_month_v_info$training <- try(rep(0,nrow(pred_data_month_v_info)))
279
      pred_data_month_info <- rbind(pred_data_month_v_info,pred_data_month_s_info)
280
    }else{
281
      pred_data_month_info <- pred_data_month_s_info
282
    }
283
    
284
    pred_data_month_info$method_interp <- rep(method_interp,nrow(pred_data_month_info)) 
285
    pred_data_month_info$var_interp <- rep(var_interp,nrow(pred_data_month_info)) 
286
    pred_data_month_info$tile_id <- rep(tile_id,nrow(pred_data_month_info)) 
287
  }    
288
    
289
  if(use_month==FALSE){
290
    pred_data_month_info <- NULL
291
  }
292
  if(use_day==FALSE){
293
    pred_data_day_info <- NULL
294
  }  
295
  #prepare object to return
296
  pred_data_info_obj <- list(pred_data_month_info,pred_data_day_info)
297
  names(pred_data_info_obj) <- c("pred_data_month_info","pred_data_day_info")
298
  #could add data.frame data_s and data_v later...
299
  ###
300
  return(pred_data_info_obj)
301
}
302

  
303
remove_from_list_fun <- function(l_x,condition_class ="try-error"){
304
  index <- vector("list",length(l_x))
305
  for (i in 1:length(l_x)){
306
    if (inherits(l_x[[i]],condition_class)){
307
      index[[i]] <- FALSE #remove from list
308
    }else{
309
      index[[i]] <- TRUE
310
    }
311
  }
312
  l_x<-l_x[unlist(index)] #remove from list all elements using subset
313
  
314
  obj <- list(l_x,index)
315
  names(obj) <- c("list","valid")
316
  return(obj)
317
}
318

  
319
##Function to list predicted tif
320
list_tif_fun <- function(i,in_dir_list,pattern_str){
321
  #list.files(path=x,pattern=".*predicted_mod1_0_1.*20100101.*.tif",full.names=T)})
322
  pat_str<- pattern_str[i]
323
  list_tif_files_dates <-lapply(in_dir_list,
324
         FUN=function(x,pat_str){list.files(path=x,pattern=pat_str,full.names=T)},pat_str=pat_str)
325
  return(list_tif_files_dates)
326
} 
327

  
328
calculate_summary_from_tb_diagnostic <-function(tb_diagnostic,metric_names){#,out_prefix,out_path){
329
  #now boxplots and mean per models
330
  library(gdata) #Nesssary to use cbindX
331
  
332
  ### Start script
333
  y_var_name<-unique(tb_diagnostic$var_interp) #extract the name of interpolated variable: dailyTmax, dailyTmin
334
  
335
  mod_names<-sort(unique(tb_diagnostic$pred_mod)) #models that have accuracy metrics
336
  t<-melt(tb_diagnostic,
337
          #measure=mod_var, 
338
          id=c("date","pred_mod","prop"),
339
          na.rm=F)
340
  t$value<-as.numeric(t$value) #problem with char!!!
341
  avg_tb<-cast(t,pred_mod~variable,mean)
342
  avg_tb$var_interp<-rep(y_var_name,times=nrow(avg_tb))
343
  median_tb<-cast(t,pred_mod~variable,median)
344
  
345
  #avg_tb<-cast(t,pred_mod~variable,mean)
346
  tb<-tb_diagnostic
347
 
348
  #mod_names<-sort(unique(tb$pred_mod)) #kept for clarity
349
  tb_mod_list<-lapply(mod_names, function(k) subset(tb, pred_mod==k)) #this creates a list of 5 based on models names
350
  names(tb_mod_list)<-mod_names
351
  #mod_metrics<-do.call(cbind,tb_mod_list)
352
  #debug here
353
  if(length(tb_mod_list)>1){
354
    mod_metrics<-do.call(cbindX,tb_mod_list) #column bind the list??
355
  }else{
356
    mod_metrics<-tb_mod_list[[1]]
357
  }
358
  
359
  test_names<-lapply(1:length(mod_names),function(k) paste(names(tb_mod_list[[1]]),mod_names[k],sep="_"))
360
  #test names are used when plotting the boxplot for the different models
361
  names(mod_metrics)<-unlist(test_names)
362
  rows_total<-lapply(tb_mod_list,nrow)
363
  avg_tb$n<-rows_total #total number of predictions on which the mean is based
364
  median_tb$n<-rows_total
365
  summary_obj<-list(avg_tb,median_tb)
366
  names(summary_obj)<-c("avg","median")
367
  return(summary_obj)  
368
}
369

  
370
#boxplot_month_from_tb(tb_diagnostic,metric_names,out_prefix,out_path)
371
## Function to display metrics by months/seasons
372
calculate_summary_from_tb_month_diagnostic <-function(tb_diagnostic,metric_names){ #,out_prefix,out_path){
373
  
374
  #Generate boxplot per month for models and accuracy metrics
375
  #Input parameters:
376
  #1) df: data frame containing accurayc metrics (RMSE etc.) per day)
377
  #2) metric_names: metrics used for validation
378
  #3) out_prefix
379
  #
380
  
381
  #################
382
  ## BEGIN
383
  y_var_name<-unique(tb_diagnostic$var_interp) #extract the name of interpolated variable: dailyTmax, dailyTmin  
384
  date_f<-strptime(tb_diagnostic$date, "%Y%m%d")   # interpolation date being processed
385
  tb_diagnostic$month<-strftime(date_f, "%m")          # current month of the date being processed
386
  mod_names<-sort(unique(tb_diagnostic$pred_mod)) #models that have accuracy metrics
387
  tb_mod_list<-lapply(mod_names, function(k) subset(tb_diagnostic, pred_mod==k)) #this creates a list of 5 based on models names
388
  names(tb_mod_list)<-mod_names
389
  t<-melt(tb_diagnostic,
390
          #measure=mod_var, 
391
          id=c("date","pred_mod","prop","month"),
392
          na.rm=F)
393
  t$value<-as.numeric(t$value) #problem with char!!!
394
  tb_mod_m_avg <-cast(t,pred_mod+month~variable,mean) #monthly mean for every model
395
  tb_mod_m_avg$var_interp<-rep(y_var_name,times=nrow(tb_mod_m_avg))
396
  
397
  tb_mod_m_sd <-cast(t,pred_mod+month~variable,sd)   #monthly sd for every model  
398
  tb_mod_m_list <-lapply(mod_names, function(k) subset(tb_mod_m_avg, pred_mod==k)) #this creates a list of 5 based on models names
399
  
400
  summary_month_obj <-c(tb_mod_m_list,tb_mod_m_avg,tb_mod_m_sd)
401
  names(summary_month_obj)<-c("tb_list","metric_month_avg","metric_month_sd")
402
  return(summary_month_obj)  
403
}
404

  
405
create_raster_prediction_obj<- function(in_dir_list,interpolation_method, y_var_name,out_prefix,out_path_list=NULL){
406
  
407
  
408
  #gather all necessary info:
409
  lf_validation_mod_month_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="gam_CAI_validation_mod_month_obj_dailyTmax.*.RData",full.names=T)})
410
  lf_validation_mod_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="gam_CAI_validation_mod_obj_dailyTmax.*.RData",full.names=T)})
411
  lf_clim_method_mod_obj <- lapply(in_dir_list,FUN=function(x){mixedsort(list.files(path=x,pattern="clim_obj_CAI_month_.*._TMAX_0_1_.*.RData",full.names=T))})
412
  lf_method_mod_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="method_mod_obj_gam_CAI_dailyTmax.*.RData",full.names=T)})
413

  
414
  tb_month_diagnostic_v_list <- mclapply(lf_validation_mod_month_obj,FUN=function(x){try( x<- load_obj(x)); try(extract_from_list_obj(x,"metrics_v"))},mc.preschedule=FALSE,mc.cores = 6)                           
415
  tb_month_diagnostic_s_list <- mclapply(lf_validation_mod_month_obj,FUN=function(x){try( x<- load_obj(x)); try(extract_from_list_obj(x,"metrics_s"))},mc.preschedule=FALSE,mc.cores = 6)                           
416
  tb_diagnostic_v_list <- mclapply(lf_validation_mod_obj,FUN=function(x){try( x<- load_obj(x)); try(extract_from_list_obj(x,"metrics_v"))},mc.preschedule=FALSE,mc.cores = 6)                           
417
  tb_diagnostic_s_list <- mclapply(lf_validation_mod_obj,FUN=function(x){try( x<- load_obj(x)); try(extract_from_list_obj(x,"metrics_s"))},mc.preschedule=FALSE,mc.cores = 6)                           
418

  
419
  #rownames(tb_month_diagnostic_v)<-NULL #remove row names
420
  #tb_month_diagnostic_v$method_interp <- interpolation_method
421

  
422
  #Call functions to create plots of metrics for validation dataset
423
  metric_names<-c("rmse","mae","me","r","m50")
424
  summary_metrics_v_list <- lapply(tb_diagnostic_v_list,FUN=function(x){try(calculate_summary_from_tb_diagnostic(x,metric_names))})
425
  summary_month_metrics_v_list <- lapply(tb_diagnostic_v_list,FUN=function(x){try(calculate_summary_from_tb_month_diagnostic(x,metric_names))}) 
426
  #list_summalist_summary_metrics_vry_month_metrics_v <- calculate_summary_from_tb_month_diagnostic(list_tb_diagnostic_v[[1]],metric_names)
427

  
428
  #if (interpolation_method %in% c("gam_CAI","kriging_CAI","gwr_CAI","gam_fusion","kriging_fusion","gwr_fusion")){
429
  lf_raster_obj <- vector("list",length=length(in_dir_list))
430
  for (i in 1:length(in_dir_list)){
431
    
432
    clim_method_mod_obj <- try(lapply(lf_clim_method_mod_obj[[i]],FUN=try(load_obj)))
433
    method_mod_obj <- try(load_obj(lf_method_mod_obj[[i]]))
434
    validation_mod_month_obj <- try(load_obj(lf_validation_mod_month_obj[[i]]))   
435
    validation_mod_obj <- try(load_obj(lf_validation_mod_obj[[i]]))
436

  
437
    tb_month_diagnostic_v <- try(tb_month_diagnostic_v_list[[i]])
438
    tb_month_diagnostic_s <- try(tb_month_diagnostic_s_list[[i]])
439
    tb_diagnostic_v <- try(tb_diagnostic_v_list[[i]])
440
    tb_diagnostic_s <- try(tb_diagnostic_s_list[[i]])
441

  
442
    summary_metrics_v <- summary_metrics_v_list[[i]]
443
    summary_month_metrics_v <- summary_month_metrics_v_list[[i]] 
444
    
445
    raster_prediction_obj <- list(clim_method_mod_obj,method_mod_obj,validation_mod_obj,validation_mod_month_obj, tb_diagnostic_v,
446
                                tb_diagnostic_s,tb_month_diagnostic_v,tb_month_diagnostic_s,summary_metrics_v,summary_month_metrics_v)
447
    names(raster_prediction_obj) <-c ("clim_method_mod_obj","method_mod_obj","validation_mod_obj","validation_mod_month_obj","tb_diagnostic_v",
448
                                "tb_diagnostic_s","tb_month_diagnostic_v","tb_month_diagnostic_s","summary_metrics_v","summary_month_metrics_v") 
449
    if(is.null(out_path_list)){
450
      out_path <- in_dir_list[[i]]
451
    }  
452
    if(!is.null(out_path_list)){
453
      out_path <- out_path_list[[i]]
454
    }  
455
    lf_raster_obj[[i]] <- file.path(out_path,paste("raster_prediction_obj_",interpolation_method,"_", y_var_name,out_prefix_str[i],".RData",sep=""))  
456

  
457
    save(raster_prediction_obj,file= file.path(out_path,paste("raster_prediction_obj_",interpolation_method,"_", y_var_name,out_prefix_str[i],".RData",sep="")))
458
  }
459
  return(lf_raster_obj)
460
}
461

  
63
source(function_assessment_part1)
462 64
##############################
463 65
#### Parameters and constants  
464 66

  
465 67
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia)
466 68
#master directory containing the definition of tile size and tiles predicted
467
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/output1500x4500_km/"
69
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output1000x3000_km/"
468 70

  
469
region_names <- c("reg1") #selected region names
71
region_names <- c("reg1","reg6") #selected region names
470 72

  
471 73
in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list regions processed for this run
472 74
#basename(in_dir_list)
......
495 97

  
496 98
y_var_name <- "dailyTmax"
497 99
interpolation_method <- c("gam_CAI")
498
out_prefix<-"run10_global_analyses_01282015"
100
out_prefix<-"run10_global_analyses_01202015"
499 101

  
500 102
#out_dir<-"/data/project/layers/commons/NEX_data/" #On NCEAS Atlas
501 103
out_dir <- "/nobackup/bparmen1/" #on NEX
......
851 453
#  create_dir_fun(file.path(output_atlas_dir,as.character(df_tile_processed$tile_coord[i]),"/shapefiles"),out_suffix=NULL)
852 454
#}  
853 455

  
854
#Copy summary textfiles back to atlas
456
#Copy summary textfiles and mosaic back to atlas
855 457

  
856 458
Atlas_dir <- file.path("/data/project/layers/commons/NEX_data/",basename(out_dir))#,"output/subset/shapefiles")
857 459
Atlas_hostname <- "parmentier@atlas.nceas.ucsb.edu"

Also available in: Unified diff