Revision 47fc2e4d
Added by Benoit Parmentier almost 9 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R | ||
---|---|---|
5 | 5 |
#Analyses, figures, tables and data are also produced in the script. |
6 | 6 |
#AUTHOR: Benoit Parmentier |
7 | 7 |
#CREATED ON: 03/23/2014 |
8 |
#MODIFIED ON: 02/01/2016
|
|
8 |
#MODIFIED ON: 02/03/2016
|
|
9 | 9 |
#Version: 5 |
10 | 10 |
#PROJECT: Environmental Layers project |
11 | 11 |
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap |
... | ... | |
164 | 164 |
year_predicted <- list_param_run_assessment_plotting$year_predicted |
165 | 165 |
|
166 | 166 |
NA_value <- NA_flag_val |
167 |
|
|
167 |
metric_name <- "rmse" #to be added to the code later... |
|
168 |
|
|
168 | 169 |
##################### START SCRIPT ################# |
169 | 170 |
|
170 | 171 |
####### PART 1: Read in data ######## |
... | ... | |
178 | 179 |
|
179 | 180 |
setwd(out_dir) |
180 | 181 |
|
181 |
list_outfiles <- vector("list", length=23) #collect names of output files
|
|
182 |
list_outfiles_names <- vector("list", length=23) #collect names of output files
|
|
182 |
list_outfiles <- vector("list", length=25) #collect names of output files
|
|
183 |
list_outfiles_names <- vector("list", length=25) #collect names of output files
|
|
183 | 184 |
counter_fig <- 0 #index of figure to collect outputs |
184 | 185 |
|
185 | 186 |
#i <- year_predicted |
... | ... | |
329 | 330 |
#unique(summaty_metrics$tile_id) |
330 | 331 |
#text(lat-shp,) |
331 | 332 |
#union(list_shp_reg_files[[1]],list_shp_reg_files[[2]]) |
333 |
#Row used in constructing output table... |
|
334 |
|
|
332 | 335 |
list_outfiles[[counter_fig+1]] <- paste("Figure1_tile_processed_region_",region_name,"_",out_suffix,".png",sep="") |
333 | 336 |
counter_fig <- counter_fig+1 |
337 |
#this will be changed to be added to data.frame on the fly |
|
338 |
r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) |
|
334 | 339 |
|
335 | 340 |
############### |
336 | 341 |
### Figure 2: boxplot of average accuracy by model and by tiles |
... | ... | |
355 | 360 |
list_outfiles[[counter_fig+i]] <- fig_filename |
356 | 361 |
} |
357 | 362 |
counter_fig <- counter_fig + length(model_name) |
363 |
|
|
364 |
r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) |
|
365 |
r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]]) |
|
366 |
|
|
358 | 367 |
## Figure 2b |
359 | 368 |
#with ylim and removing trailing... |
360 | 369 |
for(i in 1:length(model_name)){ #there are two models!! |
... | ... | |
376 | 385 |
} |
377 | 386 |
counter_fig <- counter_fig + length(model_name) |
378 | 387 |
#bwplot(rmse~tile_id, data=subset(tb,tb$pred_mod=="mod1")) |
379 |
|
|
388 |
r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]]) |
|
389 |
r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]]) |
|
390 |
|
|
380 | 391 |
############### |
381 | 392 |
### Figure 3: boxplot of average RMSE by model acrosss all tiles |
382 | 393 |
|
... | ... | |
407 | 418 |
list_outfiles[[counter_fig+2]] <- paste("Figure3b_boxplot_overall_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
408 | 419 |
} |
409 | 420 |
counter_fig <- counter_fig + length(model_name) |
421 |
r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
422 |
r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
423 |
r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
424 |
r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
410 | 425 |
|
411 | 426 |
################ |
412 | 427 |
### Figure 4: plot predicted tiff for specific date per model |
... | ... | |
476 | 491 |
} |
477 | 492 |
|
478 | 493 |
counter_fig <- counter_fig + length(model_name) |
494 |
|
|
495 |
r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
496 |
r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
479 | 497 |
|
480 | 498 |
###################### |
481 | 499 |
### Figure 6: plot map of average RMSE per tile at centroids |
... | ... | |
483 | 501 |
### Without |
484 | 502 |
|
485 | 503 |
#list_df_ac_mod <- vector("list",length=length(lf_pred_list)) |
486 |
list_df_ac_mod <- vector("list",length=2)
|
|
504 |
list_df_ac_mod <- vector("list",length=length(model_name))
|
|
487 | 505 |
|
488 | 506 |
for (i in 1:length(model_name)){ |
489 | 507 |
|
... | ... | |
518 | 536 |
} |
519 | 537 |
counter_fig <- counter_fig+length(model_name) |
520 | 538 |
|
521 |
|
|
539 |
r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
540 |
r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
541 |
|
|
522 | 542 |
###################### |
523 | 543 |
### Figure 7: Number of predictions: daily and monthly |
524 | 544 |
|
... | ... | |
547 | 567 |
#Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : |
548 | 568 |
#non-finite location and/or size for viewport |
549 | 569 |
|
550 |
j<-1 #for model name 1 |
|
570 |
j<-1 #for model name 1,mod1
|
|
551 | 571 |
for(i in 1:length(threshold_missing_day)){ |
552 | 572 |
|
553 | 573 |
#summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
... | ... | |
564 | 584 |
res_pix <- 960 |
565 | 585 |
col_mfrow <- 1 |
566 | 586 |
row_mfrow <- 1 |
587 |
#only mod1 right now |
|
567 | 588 |
png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
568 | 589 |
"_",out_suffix,".png",sep=""), |
569 | 590 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
... | ... | |
584 | 605 |
} |
585 | 606 |
counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days... |
586 | 607 |
|
608 |
r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
609 |
r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
610 |
r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
611 |
r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
612 |
|
|
587 | 613 |
### Potential |
588 | 614 |
png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
589 | 615 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
... | ... | |
594 | 620 |
|
595 | 621 |
list_outfiles[[counter_fig+1]] <- paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
596 | 622 |
counter_fig <- counter_fig + 1 |
623 |
r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
597 | 624 |
|
598 | 625 |
table(tb$pred_mod) |
599 | 626 |
table(tb$index_d) |
... | ... | |
621 | 648 |
|
622 | 649 |
list_outfiles[[counter_fig+1]] <- paste("Figure7c_histogram_number_daily_predictions_per_models","_",out_suffix,".png",sep="") |
623 | 650 |
counter_fig <- counter_fig + 1 |
651 |
r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
624 | 652 |
|
653 |
|
|
625 | 654 |
#table(tb) |
626 | 655 |
## Figure 7b |
627 | 656 |
#png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""), |
... | ... | |
640 | 669 |
##### Figure 8: Breaking down accuracy by regions!! ##### |
641 | 670 |
|
642 | 671 |
#summary_metrics_v <- merge(summary_metrics_v,df_tile_processed,by="tile_id") |
672 |
|
|
673 |
################## |
|
643 | 674 |
##First plot with all models together |
644 | 675 |
|
645 | 676 |
## Figure 8a |
... | ... | |
655 | 686 |
print(p) |
656 | 687 |
dev.off() |
657 | 688 |
|
658 |
list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_separated_by_region_with_oultiers_",out_suffix,".png",sep="") |
|
689 |
list_outfiles[[counter_fig+1]] <- paste("Figure8a_boxplot_overall_accuracy_by_model_separated_by_region_with_oultiers_",out_suffix,".png",sep="")
|
|
659 | 690 |
counter_fig <- counter_fig + 1 |
660 | 691 |
|
661 | 692 |
## Figure 8b |
... | ... | |
669 | 700 |
print(p) |
670 | 701 |
dev.off() |
671 | 702 |
|
672 |
list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
|
|
703 |
list_outfiles[[counter_fig+1]] <- paste("Figure8b_boxplot_overall_accuracy_by_model_separated_by_region_scaling_",out_suffix,".png",sep="")
|
|
673 | 704 |
counter_fig <- counter_fig + 1 |
674 | 705 |
|
706 |
|
|
707 |
r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
708 |
r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
709 |
|
|
710 |
####### |
|
675 | 711 |
##Second, plot for each model separately |
676 | 712 |
|
677 | 713 |
for(i in 1:length(model_name)){ |
... | ... | |
683 | 719 |
col_mfrow <- 1 |
684 | 720 |
row_mfrow <- 1 |
685 | 721 |
|
686 |
fig_filename <- paste("Figure8c_boxplot_overall_separated_by_region_with_oultiers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
722 |
fig_filename <- paste("Figure8c_boxplot_overall_accuracy_separated_by_region_with_outliers_",model_name[i],"_",out_suffix,".png",sep="")
|
|
687 | 723 |
png(filename=fig_filename, |
688 | 724 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
689 | 725 |
|
... | ... | |
696 | 732 |
counter_fig <- counter_fig + 1 |
697 | 733 |
|
698 | 734 |
## Figure 8d |
699 |
fig_filename <- paste("Figure8d_boxplot_overall_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="") |
|
735 |
fig_filename <- paste("Figure8d_boxplot_overall_accuracy_separated_by_region_scaling_",model_name[i],"_",out_suffix,".png",sep="")
|
|
700 | 736 |
png(filename=fig_filename, |
701 | 737 |
width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
702 | 738 |
|
... | ... | |
711 | 747 |
counter_fig <- counter_fig + 1 |
712 | 748 |
|
713 | 749 |
} |
714 |
|
|
750 |
|
|
751 |
r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
752 |
r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
753 |
r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
754 |
r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
755 |
|
|
715 | 756 |
##################################################### |
716 | 757 |
#### Figure 9: plotting boxplot by year and regions ########### |
717 | 758 |
|
... | ... | |
747 | 788 |
############## Collect information from assessment ########## |
748 | 789 |
|
749 | 790 |
# This is hard coded and can be improved later on for flexibility. It works for now... |
750 |
comments_str <- |
|
751 |
c("tile processed for the region", |
|
752 |
"boxplot with outliers", |
|
753 |
"boxplot with outliers", |
|
754 |
"boxplot scaling by tiles", |
|
755 |
"boxplot scaling by tiles", |
|
756 |
"boxplot overall region with outliers", |
|
757 |
"boxplot overall region with scaling", |
|
758 |
"boxplot overall region with outliers", |
|
759 |
"boxplot overall region with scaling", |
|
760 |
"Barplot of accuracy metrics ranked by tile", |
|
761 |
"Barplot of accuracy metrics ranked by tile", |
|
762 |
"Average accuracy metrics map at centroids", |
|
763 |
"Average accuracy metrics map at centroids", |
|
764 |
"Number of missing day threshold1 map centroids", |
|
765 |
"Number of missing day threshold2 map centroids", |
|
766 |
"Number of missing day threshold3 map centroids", |
|
767 |
"Number of missing day threshold4 map centroids", |
|
768 |
"number_daily_predictions_per_model", |
|
769 |
"histogram number_daily_predictions_per_models", |
|
770 |
"boxplot overall separated by region with_outliers", |
|
771 |
"boxplot overall separated by region with_scaling", |
|
772 |
"boxplot overall separated by region with_outliers", |
|
773 |
"boxplot overall separated by region with_scaling") |
|
791 |
#This data.frame contains all the files from the assessment |
|
774 | 792 |
|
775 |
model_name=col_model_name, |
|
776 |
reg=col_reg, |
|
777 |
year_predicted=col_year_predicted, |
|
778 |
filename=unlist(list_outfiles)) |
|
779 |
comments_str <- |
|
780 | 793 |
#Should have this at the location of the figures!!! will be done later? |
781 |
r1 <-c("figure_1","tile processed for the region",NA,region_name,year_predicted,list_outfiles[[1]]) |
|
782 |
r2 <-c("figure_2a","boxplot with outliers","mod1",region_name,year_predicted,list_outfiles[[2]]) |
|
783 |
r3 <-c("figure_2a","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[3]]) |
|
784 |
r4 <-c("figure_2b","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[4]]) |
|
785 |
r5 <-c("figure_2b","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[5]]) |
|
786 |
r6 <-c("figure_3a","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[6]]) |
|
787 |
r7 <-c("figure_3b","boxplot scaling by tiles","mod1",region_name,year_predicted,list_outfiles[[7]]) |
|
788 |
r8 <-c("figure_3a","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[8]]) |
|
789 |
r9 <-c("figure_3b","boxplot scaling by tiles","mod_kr",region_name,year_predicted,list_outfiles[[9]]) |
|
790 |
|
|
791 |
NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_1","mod_kr","mod_kr", |
|
792 |
|
|
793 |
|
|
794 |
c("tile processed for the region", |
|
795 |
"boxplot with outliers", |
|
796 |
"boxplot with outliers", |
|
797 |
"boxplot scaling by tiles", |
|
798 |
"boxplot scaling by tiles", |
|
799 |
"boxplot overall region with outliers", |
|
800 |
"boxplot overall region with scaling", |
|
801 |
"boxplot overall region with outliers", |
|
802 |
"boxplot overall region with scaling", |
|
803 |
"Barplot of accuracy metrics ranked by tile", |
|
804 |
"Barplot of accuracy metrics ranked by tile", |
|
805 |
"Average accuracy metrics map at centroids", |
|
806 |
"Average accuracy metrics map at centroids", |
|
807 |
"Number of missing day threshold1 map centroids", |
|
808 |
"Number of missing day threshold2 map centroids", |
|
809 |
"Number of missing day threshold3 map centroids", |
|
810 |
"Number of missing day threshold4 map centroids", |
|
811 |
"number_daily_predictions_per_model", |
|
812 |
"histogram number_daily_predictions_per_models", |
|
813 |
"boxplot overall separated by region with_outliers", |
|
814 |
"boxplot overall separated by region with_scaling", |
|
815 |
"boxplot overall separated by region with_outliers", |
|
816 |
"boxplot overall separated by region with_scaling") |
|
817 |
|
|
818 |
|
|
819 |
figure_no <- c("figure_1","figure_2a","figure_2a","figure_2b","figure_2b","figure_3a","figure_3b","figure_3a","figure_3b", |
|
820 |
"figure_5", "figure_5","figure_6","figure_6","Figure_7a","Figure_7a","Figure_7a","Figure_7a","Figure_7b", |
|
821 |
"Figure_7c","Figure 8a","Figure 8b","Figure 8c","Figure 8d","Figure 8c","Figure 8d") |
|
822 |
|
|
823 |
col_model_name <- c(NA,"mod1","mod_kr","mod1","mod_kr","mod1","mod_1","mod_kr","mod_kr", |
|
824 |
"mod1","mod_kr","mod1","mod_kr","mod1","mod1","mod1","mod1",NA, |
|
825 |
NA,NA,NA,"mod1","mod1","mod_kr","mod_kr") |
|
826 |
|
|
827 |
-rw-r--r-- 1 parmentier layers 14441 Feb 2 16:06 Figure2a_boxplot_with_oultiers_by_tiles_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
828 |
-rw-r--r-- 1 parmentier layers 13617 Feb 2 16:06 Figure2a_boxplot_with_oultiers_by_tiles_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
829 |
-rw-r--r-- 1 parmentier layers 9638 Feb 2 16:07 Figure2b_boxplot_scaling_by_tiles_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
830 |
-rw-r--r-- 1 parmentier layers 9606 Feb 2 16:07 Figure2b_boxplot_scaling_by_tiles_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
831 |
-rw-r--r-- 1 parmentier layers 4925 Feb 2 16:07 Figure3a_boxplot_overall_region_with_oultiers_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
832 |
-rw-r--r-- 1 parmentier layers 4527 Feb 2 16:07 Figure3b_boxplot_overall_region_scaling_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
833 |
-rw-r--r-- 1 parmentier layers 5193 Feb 2 16:07 Figure3a_boxplot_overall_region_with_oultiers_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
834 |
-rw-r--r-- 1 parmentier layers 4522 Feb 2 16:07 Figure3b_boxplot_overall_region_scaling_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
835 |
-rw-r--r-- 1 parmentier layers 6079 Feb 2 16:07 Figure5_ac_metrics_ranked_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
836 |
-rw-r--r-- 1 parmentier layers 6251 Feb 2 16:07 Figure5_ac_metrics_ranked_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
837 |
-rw-r--r-- 1 parmentier layers 120492 Feb 2 16:08 Figure6_ac_metrics_map_centroids_tile_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
838 |
-rw-r--r-- 1 parmentier layers 120345 Feb 2 16:08 Figure6_ac_metrics_map_centroids_tile_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
839 |
-rw-r--r-- 1 parmentier layers 88938 Feb 2 16:09 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_367_global_analyses_overall_assessment_reg4_01272016.png |
|
840 |
-rw-r--r-- 1 parmentier layers 89437 Feb 2 16:09 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_365_global_analyses_overall_assessment_reg4_01272016.png |
|
841 |
-rw-r--r-- 1 parmentier layers 89284 Feb 2 16:10 Figure7a_ac_metrics_map_centroids_tile_mod1_missing_day_300_global_analyses_overall_assessment_reg4_01272016.png |
|
842 |
-rw-r--r-- 1 parmentier layers 32506 Feb 2 16:10 Figure7b_number_daily_predictions_per_models_global_analyses_overall_assessment_reg4_01272016.png |
|
843 |
-rw-r--r-- 1 parmentier layers 13970 Feb 2 16:10 Figure7c_histogram_number_daily_predictions_per_models_global_analyses_overall_assessment_reg4_01272016.png |
|
844 |
-rw-r--r-- 1 parmentier layers 12726 Feb 2 16:11 Figure8a_boxplot_overall_separated_by_region_with_oultiers__global_analyses_overall_assessment_reg4_01272016.png |
|
845 |
-rw-r--r-- 1 parmentier layers 12061 Feb 2 16:11 Figure8b_boxplot_overall_separated_by_region_scaling__global_analyses_overall_assessment_reg4_01272016.png |
|
846 |
-rw-r--r-- 1 parmentier layers 10851 Feb 2 16:11 Figure8c_boxplot_overall_separated_by_region_with_oultiers_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
847 |
-rw-r--r-- 1 parmentier layers 9814 Feb 2 16:11 Figure8d_boxplot_overall_separated_by_region_scaling_mod1_global_analyses_overall_assessment_reg4_01272016.png |
|
848 |
-rw-r--r-- 1 parmentier layers 11599 Feb 2 16:11 Figure8c_boxplot_overall_separated_by_region_with_oultiers_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
849 |
-rw-r--r-- 1 parmentier layers 9597 Feb 2 16:11 Figure8d_boxplot_overall_separated_by_region_scaling_mod_kr_global_analyses_overall_assessment_reg4_01272016.png |
|
850 |
|
|
851 |
|
|
852 |
col_reg <- rep(region_name,length(list_outfiles)) |
|
853 |
col_year_predicted <- rep(year_predicted,length(list_outfiles)) |
|
854 |
|
|
855 |
#This data.frame contains all the files from the assessment |
|
856 |
df_assessment_figures_files <- data.frame(figure_no=figure_no, |
|
857 |
comment = comments_str, |
|
858 |
model_name=col_model_name, |
|
859 |
reg=col_reg, |
|
860 |
year_predicted=col_year_predicted, |
|
861 |
filename=unlist(list_outfiles)) |
|
794 |
#r1 <-c("figure_1","Tiles processed for the region",NA,NA,region_name,year_predicted,list_outfiles[[1]]) |
|
795 |
#r2 <-c("figure_2a","Boxplot of accuracy with outliers by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[2]]) |
|
796 |
#r3 <-c("figure_2a","boxplot of accuracy with outliers by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[3]]) |
|
797 |
#r4 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[4]]) |
|
798 |
#r5 <-c("figure_2b","Boxplot of accuracy with scaling by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[5]]) |
|
799 |
#r6 <-c("figure_3a","Boxplot overall accuracy with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[6]]) |
|
800 |
#r7 <-c("figure_3b","Boxplot overall accuracy with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[7]]) |
|
801 |
#r8 <-c("figure_3a","Boxplot overall accuracy with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[8]]) |
|
802 |
#r9 <-c("figure_3b","Boxplot overall accuracy with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[9]]) |
|
803 |
#r10 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod1",metric_name,region_name,year_predicted,list_outfiles[[10]]) |
|
804 |
#r11 <-c("figure_5","Barplot of accuracy metrics ranked by tiles","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[11]]) |
|
805 |
#r12 <-c("figure_6","Average accuracy metrics map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[12]]) |
|
806 |
#r13 <-c("figure_6","Average accuracy metrics map at centroids","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[13]]) |
|
807 |
#r14 <-c("figure_7","Number of missing days threshold1 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[14]]) |
|
808 |
#r15 <-c("figure_7","Number of missing days threshold2 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[15]]) |
|
809 |
#r16 <-c("figure_7","Number of missing days threshold3 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[16]]) |
|
810 |
#r17 <-c("figure_7","Number of missing days threshold4 map at centroids","mod1",metric_name,region_name,year_predicted,list_outfiles[[17]]) |
|
811 |
#r18 <-c("figure_7b","Number of daily predictions per_models","mod1",metric_name,region_name,year_predicted,list_outfiles[[18]]) |
|
812 |
#r19 <-c("figure_7c","Histogram number daily predictions per models","mod1",metric_name,region_name,year_predicted,list_outfiles[[19]]) |
|
813 |
#r20 <-c("figure 8a","Boxplot overall accuracy by model separated by region with outliers",NA,metric_name,region_name,year_predicted,list_outfiles[[20]]) |
|
814 |
#r21 <-c("figure 8b","Boxplot overall accuracy by model separated by region with scaling",NA,metric_name,region_name,year_predicted,list_outfiles[[21]]) |
|
815 |
#r22 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod1",metric_name,region_name,year_predicted,list_outfiles[[22]]) |
|
816 |
#r23 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod1",metric_name,region_name,year_predicted,list_outfiles[[23]]) |
|
817 |
#r24 <-c("figure 8c","Boxplot overall accuracy separated by region with outliers","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[24]]) |
|
818 |
#r25 <-c("figure 8d","Boxplot overall accuracy separated by region with scaling","mod_kr",metric_name,region_name,year_predicted,list_outfiles[[25]]) |
|
819 |
|
|
820 |
#Assemble all the figures description and information in a data.frame for later use |
|
821 |
list_rows <-list(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18,r19,r20,r21,r22,r23,r24,r25) |
|
822 |
df_assessment_figures_files <- as.data.frame(do.call(rbind,list_rows)) |
|
823 |
names(df_assessment_figures_files) <- c("figure_no","comment","model_name","reg","metric_name","year_predicted","filename") |
|
862 | 824 |
|
863 | 825 |
###Prepare files for copying back? |
864 | 826 |
df_assessment_figures_files_names <- file.path(out_dir,paste("df_assessment_figures_files_",region_name,"_",year_predicted,"_",out_suffix,".txt",sep="")) |
... | ... | |
888 | 850 |
|
889 | 851 |
#CALLED FROM MASTER SCRIPT: |
890 | 852 |
|
891 |
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
892 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
893 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
894 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_01062016.R" |
|
895 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
896 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
897 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
898 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
899 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
900 |
|
|
901 |
### Parameters and arguments ### |
|
902 |
|
|
903 |
var<-"TMAX" # variable being interpolated |
|
904 |
if (var == "TMAX") { |
|
905 |
y_var_name <- "dailyTmax" |
|
906 |
y_var_month <- "TMax" |
|
907 |
} |
|
908 |
if (var == "TMIN") { |
|
909 |
y_var_name <- "dailyTmin" |
|
910 |
y_var_month <- "TMin" |
|
911 |
} |
|
912 |
|
|
913 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
914 |
interpolation_method<-c("gam_CAI") |
|
915 |
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
916 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
917 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
918 |
|
|
919 |
out_region_name<-"" |
|
920 |
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") |
|
921 |
|
|
922 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
923 |
#master directory containing the definition of tile size and tiles predicted |
|
924 |
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
925 |
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
|
926 |
|
|
927 |
#region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
|
928 |
region_name <- c("reg4") #run assessment by region, this is a unique region only |
|
929 |
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
|
930 |
interpolation_method <- c("gam_CAI") #PARAM4 |
|
931 |
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
|
932 |
#out_dir <- "/nobackupp8/bparmen1/" #PARAM6 |
|
933 |
out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015" |
|
934 |
#out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
935 |
create_out_dir_param <- FALSE #PARAM7 |
|
936 |
|
|
937 |
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
938 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
939 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
940 |
|
|
941 |
#list_year_predicted <- 1984:2004 |
|
942 |
list_year_predicted <- c("2014") |
|
943 |
#year_predicted <- list_year_predicted[1] |
|
944 |
|
|
945 |
file_format <- ".tif" #format for mosaiced files #PARAM10 |
|
946 |
NA_flag_val <- -9999 #No data value, #PARAM11 |
|
947 |
num_cores <- 6 #number of cores used #PARAM13 |
|
948 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
949 |
|
|
950 |
##Additional parameters used in part 2, some these may be removed as code is simplified |
|
951 |
mosaic_plot <- FALSE #PARAM14 |
|
952 |
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
953 |
multiple_region <- TRUE #PARAM16 |
|
954 |
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
955 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
956 |
plot_region <- TRUE #PARAM18 |
|
957 |
threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
958 |
|
|
959 |
year_predicted <- list_year_predicted[1] |
|
960 |
in_dir <- out_dir #PARAM 0 |
|
961 |
#y_var_name <- "dailyTmax" #PARAM1 , already set |
|
962 |
#interpolation_method <- c("gam_CAI") #PARAM2, already set |
|
963 |
out_suffix <- out_prefix #PARAM3 |
|
964 |
#out_dir <- #PARAM4, already set |
|
965 |
create_out_dir_param <- FALSE #PARAM 5, already created and set |
|
966 |
#mosaic_plot <- FALSE #PARAM6 |
|
967 |
#if daily mosaics NULL then mosaicas all days of the year |
|
968 |
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7 |
|
969 |
#CRS_locs_WGS84 already set |
|
970 |
proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter |
|
971 |
#file_format <- ".rst" #PARAM 9, already set |
|
972 |
#NA_flag_val <- -9999 #PARAM 11, already set |
|
973 |
#multiple_region <- TRUE #PARAM 12 |
|
974 |
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too |
|
975 |
#plot_region <- TRUE |
|
976 |
#num_cores <- 6 #PARAM 14, already set |
|
977 |
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16 |
|
978 |
#use previous files produced in step 1a and stored in a data.frame |
|
979 |
df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script |
|
980 |
df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",") |
|
981 |
#threshold_missing_day <- c(367,365,300,200) #PARM18 |
|
982 |
|
|
983 |
list_param_run_assessment_plotting <-list( |
|
984 |
in_dir,y_var_name, interpolation_method, out_suffix, |
|
985 |
out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val, |
|
986 |
multiple_region, countries_shp, plot_region, num_cores, |
|
987 |
region_name, df_assessment_files_name, threshold_missing_day,year_predicted |
|
988 |
) |
|
989 |
|
|
990 |
names(list_param_run_assessment_plotting) <- c( |
|
991 |
"in_dir","y_var_name","interpolation_method","out_suffix", |
|
992 |
"out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val", |
|
993 |
"multiple_region","countries_shp","plot_region","num_cores", |
|
994 |
"region_name","df_assessment_files_name","threshold_missing_day","year_predicted" |
|
995 |
) |
|
996 |
|
|
997 |
#function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R" |
|
998 |
#source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
999 |
|
|
1000 |
debug(run_assessment_plotting_prediction_fun) |
|
1001 |
df_assessment_figures_files <- |
|
1002 |
run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting) |
|
1003 |
|
|
1004 |
|
|
1005 |
|
|
1006 |
|
|
1007 |
|
|
1008 |
|
|
1009 |
|
|
1010 |
|
|
1011 |
|
|
1012 |
|
|
1013 |
|
|
1014 |
|
|
1015 |
|
|
1016 |
|
|
1017 |
|
|
1018 |
|
|
1019 |
|
|
1020 |
|
|
1021 |
|
|
1022 |
|
|
1023 |
|
|
1024 |
|
|
1025 |
|
|
1026 |
|
|
1027 |
|
|
1028 |
|
|
1029 |
|
|
1030 |
|
|
1031 |
|
|
1032 |
|
|
1033 |
|
|
1034 |
|
|
1035 |
#### CURRENT ERROR ON NEX |
|
1036 |
|
|
1037 |
# #comments #figure_no #region #models |
|
1038 |
# tile processed for the region figure_1 reg4 NA |
|
1039 |
# boxplot with outlier figure_2a reg4 mod1 |
|
1040 |
# boxplot with outlier figure_2a reg4 mod_kr |
|
1041 |
# boxplot scaling by tiles figure_2b reg4 mod1 |
|
1042 |
# boxplot scaling by tiles figure_2b reg4 mod_kr |
|
1043 |
# boxplot overall region with outliers figure_3a reg4 NA |
|
1044 |
# boxplot overall region with scaling figure_3b reg4 NA |
|
1045 |
# Barplot of metrics ranked by tile Figure_5 |
|
1046 |
# boxplot overall region with scaling figure_3b reg4 NA |
|
1047 |
# Barplot of metrics ranked by tile Figure_5 |
|
1048 |
# Barplot of metrics ranked by tile Figure_5 |
|
1049 |
# Average metrics map centroids Figure_6 |
|
1050 |
# Average metrics map centroids Figure_6 |
|
1051 |
# Number of missing day threshold1 map centroids Figure_7a |
|
1052 |
# Number of missing day threshold1 map centroids Figure_7a |
|
1053 |
# Number of missing day threshold1 map centroids Figure_7a |
|
1054 |
# Number of missing day threshold1 map centroids Figure_7a |
|
1055 |
# number_daily_predictions_per_model Figure_7b |
|
1056 |
# histogram number_daily_predictions_per_models Figure_7c |
|
1057 |
# boxplot_overall_separated_by_region_with_oultiers_ Figure 8a |
|
1058 |
# boxplot_overall_separated_by_region_with_scaling Figure 8b |
|
1059 |
|
|
1060 |
# Browse[3]> c |
|
1061 |
# Error in text.default(coordinates(pt)[1], coordinates(pt)[2], labels = i, : |
|
1062 |
# X11 font -adobe-helvetica-%s-%s-*-*-%d-*-*-*-*-*-*-*, face 2 at size 16 could not be loaded |
|
1063 |
# In addition: Warning message: |
|
1064 |
# In polypath(x = mcrds[, 1], y = mcrds[, 2], border = border, col = col, : |
|
1065 |
# Path drawing not available for this device |
|
853 |
# script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
854 |
# function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
855 |
# function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
856 |
# function_assessment_part2 <- "global_run_scalingup_assessment_part2_01062016.R" |
|
857 |
# function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
858 |
# source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
859 |
# source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
860 |
# source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
861 |
# source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
862 |
# |
|
863 |
# ### Parameters and arguments ### |
|
864 |
# |
|
865 |
# var<-"TMAX" # variable being interpolated |
|
866 |
# if (var == "TMAX") { |
|
867 |
# y_var_name <- "dailyTmax" |
|
868 |
# y_var_month <- "TMax" |
|
869 |
# } |
|
870 |
# if (var == "TMIN") { |
|
871 |
# y_var_name <- "dailyTmin" |
|
872 |
# y_var_month <- "TMin" |
|
873 |
# } |
|
874 |
# |
|
875 |
# #interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
876 |
# interpolation_method<-c("gam_CAI") |
|
877 |
# CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
878 |
# #CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
879 |
# CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
880 |
# |
|
881 |
# out_region_name<-"" |
|
882 |
# list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") |
|
883 |
# |
|
884 |
# #reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
885 |
# #master directory containing the definition of tile size and tiles predicted |
|
886 |
# in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/" |
|
887 |
# #/nobackupp6/aguzman4/climateLayers/out_15x45/1982 |
|
888 |
# |
|
889 |
# #region_names <- c("reg23","reg4") #selected region names, #PARAM2 |
|
890 |
# region_name <- c("reg4") #run assessment by region, this is a unique region only |
|
891 |
# #region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2 |
|
892 |
# interpolation_method <- c("gam_CAI") #PARAM4 |
|
893 |
# out_prefix <- "run_global_analyses_pred_12282015" #PARAM5 |
|
894 |
# #out_dir <- "/nobackupp8/bparmen1/" #PARAM6 |
|
895 |
# out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015" |
|
896 |
# #out_dir <-paste(out_dir,"_",out_prefix,sep="") |
|
897 |
# create_out_dir_param <- FALSE #PARAM7 |
|
898 |
# |
|
899 |
# #CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"; |
|
900 |
# #CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
901 |
# CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84 |
|
902 |
# |
|
903 |
# #list_year_predicted <- 1984:2004 |
|
904 |
# list_year_predicted <- c("2014") |
|
905 |
# #year_predicted <- list_year_predicted[1] |
|
906 |
# |
|
907 |
# file_format <- ".tif" #format for mosaiced files #PARAM10 |
|
908 |
# NA_flag_val <- -9999 #No data value, #PARAM11 |
|
909 |
# num_cores <- 6 #number of cores used #PARAM13 |
|
910 |
# plotting_figures <- TRUE #running part2 of assessment to generate figures... |
|
911 |
# |
|
912 |
# ##Additional parameters used in part 2, some these may be removed as code is simplified |
|
913 |
# mosaic_plot <- FALSE #PARAM14 |
|
914 |
# day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15 |
|
915 |
# multiple_region <- TRUE #PARAM16 |
|
916 |
# countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17 |
|
917 |
# #countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas |
|
918 |
# plot_region <- TRUE #PARAM18 |
|
919 |
# threshold_missing_day <- c(367,365,300,200)#PARAM19 |
|
920 |
# |
|
921 |
# year_predicted <- list_year_predicted[1] |
|
922 |
# in_dir <- out_dir #PARAM 0 |
|
923 |
# #y_var_name <- "dailyTmax" #PARAM1 , already set |
|
924 |
# #interpolation_method <- c("gam_CAI") #PARAM2, already set |
|
925 |
# out_suffix <- out_prefix #PARAM3 |
|
926 |
# #out_dir <- #PARAM4, already set |
|
927 |
# create_out_dir_param <- FALSE #PARAM 5, already created and set |
|
928 |
# #mosaic_plot <- FALSE #PARAM6 |
|
929 |
# #if daily mosaics NULL then mosaicas all days of the year |
|
930 |
# #day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7 |
|
931 |
# #CRS_locs_WGS84 already set |
|
932 |
# proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter |
|
933 |
# #file_format <- ".rst" #PARAM 9, already set |
|
934 |
# #NA_flag_val <- -9999 #PARAM 11, already set |
|
935 |
# #multiple_region <- TRUE #PARAM 12 |
|
936 |
# #countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too |
|
937 |
# #plot_region <- TRUE |
|
938 |
# #num_cores <- 6 #PARAM 14, already set |
|
939 |
# #region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16 |
|
940 |
# #use previous files produced in step 1a and stored in a data.frame |
|
941 |
# df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script |
|
942 |
# df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",") |
|
943 |
# #threshold_missing_day <- c(367,365,300,200) #PARM18 |
|
944 |
# |
|
945 |
# list_param_run_assessment_plotting <-list( |
|
946 |
# in_dir,y_var_name, interpolation_method, out_suffix, |
|
947 |
# out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val, |
|
948 |
# multiple_region, countries_shp, plot_region, num_cores, |
|
949 |
# region_name, df_assessment_files_name, threshold_missing_day,year_predicted |
|
950 |
# ) |
|
951 |
# |
|
952 |
# names(list_param_run_assessment_plotting) <- c( |
|
953 |
# "in_dir","y_var_name","interpolation_method","out_suffix", |
|
954 |
# "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val", |
|
955 |
# "multiple_region","countries_shp","plot_region","num_cores", |
|
956 |
# "region_name","df_assessment_files_name","threshold_missing_day","year_predicted" |
|
957 |
# ) |
|
958 |
# |
|
959 |
# #function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R" |
|
960 |
# #source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
961 |
# |
|
962 |
# debug(run_assessment_plotting_prediction_fun) |
|
963 |
# df_assessment_figures_files <- |
|
964 |
# run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting) |
|
1066 | 965 |
|
1067 | 966 |
|
1068 | 967 |
|
1069 |
# Browse[2]> for(i in 1:length(threshold_missing_day)){ |
|
1070 |
# + |
|
1071 |
# + #summary_metrics_v$n_missing <- summary_metrics_v$n == 365 |
|
1072 |
# + #summary_metrics_v$n_missing <- summary_metrics_v$n < 365 |
|
1073 |
# + summary_metrics_v$n_missing <- summary_metrics_v$n < threshold_missing_day[i] |
|
1074 |
# + summary_metrics_v_subset <- subset(summary_metrics_v,model_name=="mod1") |
|
1075 |
# + |
|
1076 |
# + #res_pix <- 1200 |
|
1077 |
# + res_pix <- 960 |
|
1078 |
# + |
|
1079 |
# + col_mfrow <- 1 |
|
1080 |
# + row_mfrow <- 1 |
|
1081 |
# + fig_filename <- paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
1082 |
# + "_",out_suffix,".png",sep="") |
|
1083 |
# + png(filename=paste("Figure7a_ac_metrics_map_centroids_tile_",model_name[j],"_","missing_day_",threshold_missing_day[i], |
|
1084 |
# + "_",out_suffix,".png",sep=""), |
|
1085 |
# + width=col_mfrow*res_pix,height=row_mfrow*res_pix) |
|
1086 |
# + |
|
1087 |
# + model_name[j] |
|
1088 |
# + |
|
1089 |
# + p_shp <- layer(sp.polygons(reg_layer, lwd=1, col='black')) |
|
1090 |
# + #title("(a) Mean for 1 January") |
|
1091 |
# + p <- bubble(summary_metrics_v_subset,"n_missing",main=paste("Missing per tile and by ",model_name[j]," for ", |
|
1092 |
# + threshold_missing_day[i])) |
|
1093 |
# + p1 <- p+p_shp |
|
1094 |
# + try(print(p1)) #error raised if number of missing values below a threshold does not exist |
|
1095 |
# + dev.off() |
|
1096 |
# + |
|
1097 |
# + list_outfiles[[counter_fig+i]] <- fig_filename |
|
1098 |
# + } |
|
1099 |
# debug at /nobackupp8/bparmen1/env_layers_scripts/global_run_scalingup_assessment_part2_01042016.R#272: i |
|
1100 |
# Browse[3]> counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days... |
|
1101 |
# Browse[3]> c |
|
1102 |
# Error in grid.Call.graphics(L_setviewport, pvp, TRUE) : |
|
1103 |
# non-finite location and/or size for viewport |
Also available in: Unified diff
more changes to part2 assessment figure 2 production to clean up and record figures produced