Revision 48863fb9
Added by Benoit Parmentier about 10 years ago
climate/research/oregon/interpolation/global_run_scalingup_assessment_part1.R | ||
---|---|---|
315 | 315 |
#in_dir1 <- "/data/project/layers/commons/NEX_data/test_run1_03232014/output" #On Atlas |
316 | 316 |
#in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/" #On NEX |
317 | 317 |
in_dir1 <- "/nobackupp4/aguzman4/climateLayers/output20Deg/" |
318 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg5/20.0_0.0/ |
|
319 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg3/-20.0_-70.0/ |
|
320 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg5/20.0_30.0/ |
|
321 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg4/40.0_0.0/ |
|
322 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg5/20.0_-10.0/ |
|
323 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg4/50.0_0.0/ |
|
324 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg6/60.0_40.0/ |
|
325 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg6/30.0_40.0/ |
|
326 |
|
|
327 | 318 |
|
328 | 319 |
#/nobackupp4/aguzman4/climateLayers/output10Deg/reg1/finished.txt |
329 | 320 |
#in_dir_list <- list.dirs(path=in_dir1,recursive=FALSE) #get the list of directories with resutls by 10x10 degree tiles |
... | ... | |
345 | 336 |
#in_dir_list <- file.path(in_dir1,read.table(file.path(in_dir1,"processed.txt"))$V1) |
346 | 337 |
#in_dir_list <- as.list(in_dir_list[-1]) |
347 | 338 |
#in_dir_list <- in_dir_list[grep("bak",basename(basename(in_dir_list)),invert=TRUE)] #the first one is the in_dir1 |
348 |
in_dir_shp <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles... |
|
339 |
#in_dir_shp <- in_dir_list[grep("shapefiles",basename(in_dir_list),invert=FALSE)] #select directory with shapefiles...
|
|
349 | 340 |
in_dir_shp <- c( |
350 | 341 |
"/nobackupp4/aguzman4/climateLayers/output20Deg/reg3/subset/shapefiles/", |
351 | 342 |
"/nobackupp4/aguzman4/climateLayers/output20Deg/reg5/subset/shapefiles/", |
... | ... | |
403 | 394 |
|
404 | 395 |
lf_covar_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="covar_obj.*.RData",full.names=T)}) |
405 | 396 |
lf_covar_tif <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="covar.*.tif",full.names=T)}) |
406 |
lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostic.*.RData",full.names=T)}) |
|
397 |
#diagnostics_obj_gam_fitting_dailyTmax7__08062014.RData |
|
398 |
lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_.*.RData",full.names=T)}) |
|
399 |
lf_diagnostic_obj <- lf_diagnostic_obj[grep("lk_min",lf_diagnostic_obj,invert=T)] #remove object that have lk_min... |
|
407 | 400 |
|
408 | 401 |
########################## START SCRIPT ############################## |
409 | 402 |
|
... | ... | |
486 | 479 |
write.table((tb_diagnostic_v_NA), |
487 | 480 |
file=file.path(out_dir,paste("tb_diagnostic_v_NA","_",out_prefix,".txt",sep="")),sep=",") |
488 | 481 |
|
482 |
####### process gam fitting diagnostic info |
|
483 |
|
|
484 |
#/nobackupp4/aguzman4/climateLayers/output20Deg/reg5/20.0_30.0//diagnostics_obj_gam_fitting_TMax_9_mod2_08062014.RData |
|
485 |
#lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_.*.RData",full.names=T)}) |
|
486 |
#lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_obj_gam_fitting_TMax_*_mod*_08062014.RData",full.names=T)}) |
|
487 |
lf_diagnostic_obj <- lapply(in_dir_list,FUN=function(x){list.files(path=x,pattern="diagnostics_obj_gam_fitting_TMax_.*._mod.*._08062014.RData",full.names=T)}) |
|
488 |
|
|
489 |
#lf_diagnostic_obj <- lf_diagnostic_obj[grep("lk_min",lf_diagnostic_obj,invert=T)] #remove object that have lk_min... |
|
490 |
|
|
491 |
names(lf_diagnostic_obj) <- list_names_tile_id |
|
492 |
lf_diagnostic_obj_tmp <- remove_from_list_fun(lf_diagnostic_obj)$list |
|
493 |
#df_tile_processed$tb_diag <- remove_from_list_fun(tb_diagnostic_v_list)$valid |
|
494 |
|
|
495 |
gam_diagnostic_tb_list <- vector("list",length=length(lf_diagnostic_obj_tmp)) |
|
496 |
for(i in 1:length(lf_diagnostic_obj_tmp)){ |
|
497 |
l_diagnostic_obj_tmp <- lf_diagnostic_obj_tmp[[i]] |
|
498 |
tile_id_name <- names(lf_diagnostic_obj_tmp)[i] |
|
499 |
#l_diagnostic_obj_tmp <- l_diagnostic_obj_tmp[grep("lk_min",l_diagnostic_obj_tmp,invert=T)] #remove object that have lk_min... |
|
500 |
l_diagnostic_obj_tmp_list <- lapply(l_diagnostic_obj_tmp,FUN=function(x){try(x<-load_obj(x));try(x[["df_diagnostics"]])})#,mc.preschedule=FALSE,mc.cores = 6) |
|
501 |
gam_diagnostic_tb <- do.call(rbind.fill,l_diagnostic_obj_tmp_list)#create a df for NA tiles with all accuracy metrics |
|
502 |
gam_diagnostic_tb$tile_id <- tile_id_name |
|
503 |
gam_diagnostic_tb_list[[i]] <- gam_diagnostic_tb |
|
504 |
} |
|
505 |
|
|
506 |
gam_diagnostic_df <- do.call(rbind.fill,gam_diagnostic_tb_list) #create a df for NA tiles with all accuracy metrics |
|
507 |
|
|
508 |
write.table(gam_diagnostic_df, |
|
509 |
file=file.path(out_dir,paste("gam_diagnostic_df_",out_prefix,".txt",sep="")),sep=",") |
|
510 |
|
|
489 | 511 |
################# |
490 | 512 |
###Table 3: monthly station information with predictions for all tiles |
491 | 513 |
|
Also available in: Unified diff
run4 assessment NEX gam fitting with different k plots