Revision 48de039c
Added by Benoit Parmentier about 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part2.R | ||
---|---|---|
65 | 65 |
|
66 | 66 |
#Mosaic related on NEX |
67 | 67 |
#script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" |
68 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_08232016.R" #Functions used to mosaic predicted tiles
|
|
69 |
function_mosaicing <-"global_run_scalingup_mosaicing_08222016.R" #main scripts for mosaicing predicted tiles
|
|
68 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_09282016.R" #Functions used to mosaic predicted tiles
|
|
69 |
function_mosaicing <-"global_run_scalingup_mosaicing_09282016.R" #main scripts for mosaicing predicted tiles
|
|
70 | 70 |
|
71 | 71 |
source(file.path(script_path,function_mosaicing)) #source all functions used in this script |
72 | 72 |
source(file.path(script_path,function_mosaicing_functions)) #source all functions used in this script |
... | ... | |
87 | 87 |
#Product assessment |
88 | 88 |
function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09192016b.R" |
89 | 89 |
source(file.path(script_path,function_product_assessment_part1_functions)) #source all functions used in this script |
90 |
function_product_assessment_part2_functions <- "global_product_assessment_part2_functions_10032016b.R" |
|
91 |
source(file.path(script_path,function_product_assessment_part2_functions)) #source all functions used in this script |
|
90 | 92 |
|
91 | 93 |
############################### |
92 | 94 |
####### Parameters, constants and arguments ### |
... | ... | |
191 | 193 |
setwd(out_dir) #use previoulsy defined directory |
192 | 194 |
} |
193 | 195 |
|
194 |
setwd(out_dir) |
|
196 |
#setwd(out_dir)
|
|
195 | 197 |
|
196 | 198 |
########### #################### |
197 | 199 |
|
... | ... | |
211 | 213 |
r_stack <- stack(lf_raster,quick=T) #this is very fast now with the quick option! |
212 | 214 |
} |
213 | 215 |
|
216 |
NAvalue(r_stack) |
|
217 |
plot(r_stack,y=6,zlim=c(-10000,10000)) #this is not rescaled |
|
218 |
plot(r_stack,zlim=c(-50,50),col=matlab.like(255)) |
|
219 |
|
|
220 |
#plot(r_mosaic_scaled,y=6,zlim=c(-50,50)) |
|
221 |
#plot(r_mosaic_scaled,zlim=c(-50,50),col=matlab.like(255)) |
|
222 |
|
|
223 |
#debug(extract_date) |
|
224 |
#test <- extract_date(6431,lf_mosaic_list,12) #extract item number 12 from the name of files to get the data |
|
225 |
#list_dates_produced <- unlist(mclapply(1:length(lf_raster),FUN=extract_date,x=lf_raster,item_no=13,mc.preschedule=FALSE,mc.cores = num_cores)) |
|
226 |
lf_mosaic_list <- lf_raster |
|
227 |
list_dates_produced <- mclapply(1:2, |
|
228 |
FUN=extract_date, |
|
229 |
x=lf_mosaic_list, |
|
230 |
item_no=13, |
|
231 |
mc.preschedule=FALSE, |
|
232 |
mc.cores = 2) |
|
233 |
item_no <-13 |
|
234 |
list_dates_produced <- unlist(mclapply(1:length(lf_raster), |
|
235 |
FUN=extract_date, |
|
236 |
x=lf_raster, |
|
237 |
item_no=item_no, |
|
238 |
mc.preschedule=FALSE, |
|
239 |
mc.cores = num_cores)) |
|
240 |
|
|
241 |
list_dates_produced_date_val <- as.Date(strptime(list_dates_produced,"%Y%m%d")) |
|
242 |
month_str <- format(list_dates_produced_date_val, "%b") ## Month, char, abbreviated |
|
243 |
year_str <- format(list_dates_produced_date_val, "%Y") ## Year with century |
|
244 |
day_str <- as.numeric(format(list_dates_produced_date_val, "%d")) ## numeric month |
|
245 |
|
|
246 |
df_raster <- data.frame(lf=basename(lf_raster), |
|
247 |
date=list_dates_produced_date_val, |
|
248 |
month_str=month_str, |
|
249 |
year=year_str, |
|
250 |
day=day_str, |
|
251 |
dir=dirname(lf_mosaic_list)) |
|
252 |
|
|
253 |
df_raster_fname <- file.path(out_dir,paste0("df_raster_",out_suffix,".txt")) |
|
254 |
write.table(df_raster,file= df_raster_fname,sep=",",row.names = F) |
|
214 | 255 |
|
215 | 256 |
############### PART5: Make raster stack and display maps ############# |
216 | 257 |
#### Extract corresponding raster for given dates and plot stations used |
... | ... | |
240 | 281 |
##################################### PART 5 ###### |
241 | 282 |
##### Plotting specific days for the mosaics |
242 | 283 |
|
243 |
r_mosaic_scaled <- stack(lf_mosaic_scaled) |
|
244 |
NAvalue(r_mosaic_scaled)<- -3399999901438340239948148078125514752.000 |
|
245 |
plot(r_mosaic_scaled,y=6,zlim=c(-50,50)) |
|
246 |
plot(r_mosaic_scaled,zlim=c(-50,50),col=matlab.like(255)) |
|
284 |
function_product_assessment_part2_functions <- "global_product_assessment_part2_functions_10032016b.R" |
|
285 |
source(file.path(script_path,function_product_assessment_part2_functions)) #source all functions used in this script |
|
247 | 286 |
|
248 |
#layout_m<-c(1,3) #one row two columns
|
|
249 |
#levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255))
|
|
250 |
#levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255))
|
|
287 |
#NA_flag_val_mosaic <- -3399999901438340239948148078125514752.000
|
|
288 |
r_stack_subset <- subset(r_stack,1:11)
|
|
289 |
l_dates <- list_dates_produced_date_val[1:11]
|
|
251 | 290 |
|
252 |
#png(paste("Figure7a__spatial_pattern_tmax_prediction_levelplot_",date_selected,out_prefix,".png", sep=""),
|
|
253 |
# height=480*layout_m[1],width=480*layout_m[2])
|
|
254 |
#plot(r_pred,col=temp.colors(255),zlim=c(-3500,4500))
|
|
255 |
#plot(r_pred,col=matlab.like(255),zlim=c(-40,50))
|
|
256 |
#paste(raster_name[1:7],collapse="_")
|
|
257 |
#add filename option later
|
|
291 |
#undebug(plot_raster_mosaic)
|
|
292 |
zlim_val <- NULL
|
|
293 |
list_param_plot_raster_mosaic <- list(l_dates,r_stack_subset,NA_flag_val,out_dir,out_suffix,
|
|
294 |
region_name,variable_name, zlim_val)
|
|
295 |
names(list_param_plot_raster_mosaic) <- c("l_dates","r_mosaiced_scaled","NA_flag_val_mosaic","out_dir","out_suffix",
|
|
296 |
"region_name","variable_name","zlim_val")
|
|
258 | 297 |
|
259 |
#NA_flag_val_mosaic <- -3399999901438340239948148078125514752.000 |
|
298 |
lf_mosaic_plot_fig <- lapply(1:2, |
|
299 |
FUN=plot_raster_mosaic, |
|
300 |
list_param=list_param_plot_raster_mosaic) |
|
301 |
|
|
302 |
lf_mosaic_plot_fig <- mclapply(1:length(l_dates), |
|
303 |
FUN=plot_raster_mosaic, |
|
304 |
list_param=list_param_plot_raster_mosaic, |
|
305 |
mc.preschedule=FALSE, |
|
306 |
mc.cores = num_cores) |
|
260 | 307 |
|
261 |
list_param_plot_raster_mosaic <- list(l_dates,r_mosaic_scaled,NA_flag_val_mosaic,out_dir,out_suffix, |
|
262 |
region_name,variable_name) |
|
263 |
names(list_param_plot_raster_mosaic) <- c("l_dates","r_mosaic_scaled","NA_flag_val_mosaic","out_dir","out_suffix", |
|
264 |
"region_name","variable_name") |
|
265 | 308 |
|
266 |
lf_mosaic_plot_fig <- mclapply(1:length(lf_mosaic_scaled),FUN=plot_raster_mosaic,list_param=list_param_plot_raster_mosaic,mc.preschedule=FALSE,mc.cores = num_cores) |
|
267 | 309 |
|
268 | 310 |
#### PLOT ACCURACY METRICS: First test #### |
269 | 311 |
##this will be cleaned up later: |
Also available in: Unified diff
script 2 product assessment, modification of figures