Revision 4912ab51
Added by Benoit Parmentier over 8 years ago
climate/research/oregon/interpolation/global_product_assessment_part1.R | ||
---|---|---|
1 |
#################################### INTERPOLATION OF TEMPERATURES ####################################### |
|
2 |
####################### Assessment of product part 1: mosaic and accuracy ############################## |
|
3 |
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA. |
|
4 |
#Combining tables and figures for individual runs for years and tiles. |
|
5 |
#AUTHOR: Benoit Parmentier |
|
6 |
#CREATED ON: 05/15/2016 |
|
7 |
#MODIFIED ON: 05/16/2016 |
|
8 |
#Version: 1 |
|
9 |
#PROJECT: Environmental Layers project |
|
10 |
#COMMENTS: Initial commit, script based on part NASA biodiversity conferenc |
|
11 |
#TODO: |
|
12 |
#1) Add plot broken down by year and region |
|
13 |
#2) Modify code for overall assessment accross all regions and year |
|
14 |
#3) Clean up |
|
15 |
|
|
16 |
#First source these files: |
|
17 |
#Resolved call issues from R. |
|
18 |
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh |
|
19 |
# |
|
20 |
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015 |
|
21 |
|
|
22 |
################################################################################################# |
|
23 |
|
|
24 |
|
|
25 |
### Loading R library and packages |
|
26 |
#library used in the workflow production: |
|
27 |
library(gtools) # loading some useful tools |
|
28 |
library(mgcv) # GAM package by Simon Wood |
|
29 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
30 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
31 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
32 |
library(gstat) # Kriging and co-kriging by Pebesma et al. |
|
33 |
library(fields) # NCAR Spatial Interpolation methods such as kriging, splines |
|
34 |
library(raster) # Hijmans et al. package for raster processing |
|
35 |
library(gdata) # various tools with xls reading, cbindX |
|
36 |
library(rasterVis) # Raster plotting functions |
|
37 |
library(parallel) # Parallelization of processes with multiple cores |
|
38 |
library(maptools) # Tools and functions for sp and other spatial objects e.g. spCbind |
|
39 |
library(maps) # Tools and data for spatial/geographic objects |
|
40 |
library(reshape) # Change shape of object, summarize results |
|
41 |
library(plotrix) # Additional plotting functions |
|
42 |
library(plyr) # Various tools including rbind.fill |
|
43 |
library(spgwr) # GWR method |
|
44 |
library(automap) # Kriging automatic fitting of variogram using gstat |
|
45 |
library(rgeos) # Geometric, topologic library of functions |
|
46 |
#RPostgreSQL # Interface R and Postgres, not used in this script |
|
47 |
library(gridExtra) |
|
48 |
#Additional libraries not used in workflow |
|
49 |
library(pgirmess) # Krusall Wallis test with mulitple options, Kruskalmc {pgirmess} |
|
50 |
library(colorRamps) |
|
51 |
library(zoo) |
|
52 |
library(xts) |
|
53 |
library(lubridate) |
|
54 |
|
|
55 |
###### Function used in the script ####### |
|
56 |
|
|
57 |
#script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script |
|
58 |
script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" #path to script |
|
59 |
|
|
60 |
## NASA poster and paper related |
|
61 |
source(file.path(script_path,"NASA2016_conference_temperature_predictions_function_05032016b.R")) |
|
62 |
|
|
63 |
#Mosaic related on NEX |
|
64 |
#script_path <- "/home/parmentier/Data/IPLANT_project/env_layers_scripts" |
|
65 |
function_mosaicing_functions <- "global_run_scalingup_mosaicing_function_04232016.R" #PARAM12 |
|
66 |
function_mosaicing <-"global_run_scalingup_mosaicing_05012016.R" |
|
67 |
source(file.path(script_path,function_mosaicing)) #source all functions used in this script |
|
68 |
source(file.path(script_path,function_mosaicing_functions)) #source all functions used in this script |
|
69 |
|
|
70 |
#Assessment on NEX |
|
71 |
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12 |
|
72 |
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R" |
|
73 |
function_assessment_part2 <- "global_run_scalingup_assessment_part2_02092016.R" |
|
74 |
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R" |
|
75 |
function_assessment_part3 <- "global_run_scalingup_assessment_part3_04292016b.R" |
|
76 |
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script |
|
77 |
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script |
|
78 |
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script |
|
79 |
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script |
|
80 |
source(file.path(script_path,function_assessment_part3)) #source all functions used in this script |
|
81 |
|
|
82 |
############################### |
|
83 |
####### Parameters, constants and arguments ### |
|
84 |
|
|
85 |
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #constant 1 |
|
86 |
|
|
87 |
var<-"TMAX" # variable being interpolated #param 1, arg 1 |
|
88 |
|
|
89 |
##Add for precip later... |
|
90 |
if (var == "TMAX") { |
|
91 |
y_var_name <- "dailyTmax" |
|
92 |
y_var_month <- "TMax" |
|
93 |
} |
|
94 |
if (var == "TMIN") { |
|
95 |
y_var_name <- "dailyTmin" |
|
96 |
y_var_month <- "TMin" |
|
97 |
} |
|
98 |
|
|
99 |
##Add for precip later... |
|
100 |
if (var == "TMAX") { |
|
101 |
variable_name <- "maximum temperature" |
|
102 |
} |
|
103 |
if (var == "TMIN") { |
|
104 |
variable_name <- "minimum temperature" |
|
105 |
} |
|
106 |
|
|
107 |
#interpolation_method<-c("gam_fusion") #other otpions to be added later |
|
108 |
interpolation_method<-c("gam_CAI") #param 2 |
|
109 |
CRS_interp <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" #param 3 |
|
110 |
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs"; |
|
111 |
|
|
112 |
out_region_name<-"" |
|
113 |
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") #param 4 |
|
114 |
|
|
115 |
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia) |
|
116 |
#master directory containing the definition of tile size and tiles predicted |
|
117 |
in_dir <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/assessment" |
|
118 |
in_dir_mosaic <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/mosaic" |
|
119 |
|
|
120 |
region_name <- c("reg4") #param 6, arg 3 |
|
121 |
|
|
122 |
create_out_dir_param <- TRUE #param 9, arg 6 |
|
123 |
out_suffix <- "_global_assessment_reg4_05152016" |
|
124 |
|
|
125 |
out_dir <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/assessment" |
|
126 |
|
|
127 |
#run_figure_by_year <- TRUE # param 10, arg 7 |
|
128 |
|
|
129 |
file_format <- ".tif" #format for mosaiced files # param 11 |
|
130 |
NA_flag_val <- -32768 #No data value, # param 12 |
|
131 |
|
|
132 |
#num_cores <- 6 #number of cores used # param 13, arg 8 |
|
133 |
plotting_figures <- TRUE #running part2 of assessment to generate figures... # param 14 |
|
134 |
num_cores <- 11 #number of cores used # param 13, arg 8 |
|
135 |
#python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" #PARAM 30 |
|
136 |
python_bin <- "/usr/bin" #PARAM 30 |
|
137 |
|
|
138 |
day_start <- "1984101" #PARAM 12 arg 12 |
|
139 |
day_end <- "19981231" #PARAM 13 arg 13 |
|
140 |
|
|
141 |
#infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg4.tif" |
|
142 |
infile_mask <- "/data/project/layers/commons/NEX_data/regions_input_files/r_mask_LST_reg4.tif" |
|
143 |
|
|
144 |
#run_figure_by_year <- TRUE # param 10, arg 7 |
|
145 |
list_year_predicted <- "1984,2014" |
|
146 |
scaling <- 0.01 #was scaled on 100 |
|
147 |
|
|
148 |
df_centroids_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/output_reg4_1999/df_centroids_19990701_reg4_1999.txt" |
|
149 |
|
|
150 |
raster_name_lf <- c("/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920101_reg4_1992_m_gam_CAI_dailyTmax_19920101_reg4_1992.tif", |
|
151 |
"/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920102_reg4_1992_m_gam_CAI_dailyTmax_19920102_reg4_1992.tif", |
|
152 |
"/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920103_reg4_1992_m_gam_CAI_dailyTmax_19920103_reg4_1992.tif", |
|
153 |
"/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920701_reg4_1992_m_gam_CAI_dailyTmax_19920701_reg4_1992.tif", |
|
154 |
"/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920702_reg4_1992_m_gam_CAI_dailyTmax_19920702_reg4_1992.tif", |
|
155 |
"/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/comp_r_m_use_edge_weights_weighted_mean_gam_CAI_dailyTmax_19920703_reg4_1992_m_gam_CAI_dailyTmax_19920703_reg4_1992.tif") |
|
156 |
|
|
157 |
#l_dates <- c("19990101","19990102","19990103","19990701","19990702","19990703") |
|
158 |
l_dates <- c("19920101","19920102","19920103","19920701","19920702","19990703") |
|
159 |
|
|
160 |
df_points_extracted_fname <- "/data/project/layers/commons/NEX_data/climateLayers/out/reg4/mosaic/int_mosaics/data_points_extracted.txt" |
|
161 |
NA_flag_val_mosaic <- -3399999901438340239948148078125514752.000 |
|
162 |
in_dir_list_filename <- NULL #if NULL, use the in_dir directory to search for info |
|
163 |
|
|
164 |
##################### START SCRIPT ################# |
|
165 |
|
|
166 |
####### PART 1: Read in data ######## |
|
167 |
out_dir <- in_dir |
|
168 |
if (create_out_dir_param == TRUE) { |
|
169 |
out_dir <- create_dir_fun(out_dir,out_suffix) |
|
170 |
setwd(out_dir) |
|
171 |
}else{ |
|
172 |
setwd(out_dir) #use previoulsy defined directory |
|
173 |
} |
|
174 |
|
|
175 |
setwd(out_dir) |
|
176 |
|
|
177 |
########### #################### |
|
178 |
|
|
179 |
if(!is.null(in_dir_list_filename)){ |
|
180 |
in_dir_list <- as.list(read.table(in_dir_list_filename,stringsAsFactors=F)[,1]) |
|
181 |
}else{ |
|
182 |
pattern_str <- paste0("^output_",region_name,".*.") |
|
183 |
in_dir_list_all <- list.dirs(path=in_dir,recursive = T) |
|
184 |
in_dir_list <- in_dir_list_all[grep(pattern_str,basename(in_dir_list_all),invert=FALSE)] #select directory with shapefiles... |
|
185 |
#in_dir_shp <- file.path(in_dir_list_all,"shapefiles") |
|
186 |
} |
|
187 |
|
|
188 |
list_tb_fname <- list.files(path=in_dir_list,"tb_diagnostic_v_NA_.*.txt",full.names=T) |
|
189 |
list_df_fname <- list.files(path=in_dir_list,"df_tile_processed_.*..txt",full.names=T) |
|
190 |
list_summary_metrics_v_fname <- list.files(path=in_dir_list,"summary_metrics_v2_NA_.*.txt",full.names=T) |
|
191 |
list_tb_s_fname <- list.files(path=in_dir_list,"tb_diagnostic_s_NA.*.txt",full.names=T) |
|
192 |
list_tb_month_s_fname <- list.files(path=in_dir_list,"tb_month_diagnostic_s.*.txt",full.names=T) |
|
193 |
list_data_month_s_fname <- list.files(path=in_dir_list,"data_month_s.*.txt",full.names=T) |
|
194 |
list_data_s_fname <- list.files(path=in_dir_list,"data_day_s.*.txt",full.names=T) |
|
195 |
list_data_v_fname <- list.files(path=in_dir_list,"data_day_v.*.txt",full.names=T) |
|
196 |
list_pred_data_month_info_fname <- list.files(path=in_dir_list,"pred_data_month_info.*.txt",full.names=T) |
|
197 |
list_pred_data_day_info_fname <- list.files(path=in_dir_list,"pred_data_day_info.*.txt",full.names=T) |
|
198 |
|
|
199 |
## Use station from specific year and date? |
|
200 |
|
|
201 |
|
|
202 |
|
|
203 |
pattern_str <-"*.tif" |
|
204 |
lf_mosaic_list <- list.files(path=in_dir_mosaic,pattern=pattern_str,recursive=F,full.names=T) |
|
205 |
r_mosaic <- stack(lf_mosaic_list) |
|
206 |
save(r_mosaic,file="r_mosaic.RData") |
|
207 |
#start_date <- day_to_mosaic_range[1] |
|
208 |
#end_date <- day_to_mosaic_range[2] |
|
209 |
#start_date <- day_start #PARAM 12 arg 12 |
|
210 |
#end_date <- day_end #PARAM 13 arg 13 |
|
211 |
|
|
212 |
#date_to_plot <- seq(as.Date(strptime(start_date,"%Y%m%d")), as.Date(strptime(end_date,"%Y%m%d")), 'day') |
|
213 |
#l_dates <- format(date_to_plot,"%Y%m%d") #format back to the relevant date format for files |
|
214 |
mask_pred <- FALSE |
|
215 |
list_param_pre_process <- list(raster_name_lf,python_bin,infile_mask,scaling,mask_pred,NA_flag_val,out_suffix,out_dir) |
|
216 |
names(list_param_pre_process) <- c("lf","python_bin","infile_mask","scaling","mask_pred","NA_flag_val","out_suffix","out_dir") |
|
217 |
|
|
218 |
#debug(pre_process_raster_mosaic_fun) |
|
219 |
|
|
220 |
lf_mosaic_scaled <- mclapply(1:length(raster_name_lf),FUN=pre_process_raster_mosaic_fun,list_param=list_param_pre_process,mc.preschedule=FALSE,mc.cores = num_cores) |
|
221 |
#lf_mosaic_scaled <- mclapply(1:length(raster_name_lf),FUN=pre_process_raster_mosaic_fun,list_param=list_param_pre_process,mc.preschedule=FALSE,mc.cores = num_cores) |
|
222 |
|
|
223 |
#test <- pre_process_raster_mosaic_fun(2,list_param_pre_process) |
|
224 |
#lf_mosaic_scaled <- unlist(lf_mosaic_scaled) |
|
225 |
|
|
226 |
r_mosaic_scaled <- stack(lf_mosaic_scaled) |
|
227 |
NAvalue(r_mosaic_scaled)<- -3399999901438340239948148078125514752.000 |
|
228 |
plot(r_mosaic_scaled,y=6,zlim=c(-50,50)) |
|
229 |
plot(r_mosaic_scaled,zlim=c(-50,50),col=matlab.like(255)) |
|
230 |
|
|
231 |
#layout_m<-c(1,3) #one row two columns |
|
232 |
#levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255)) |
|
233 |
#levelplot(r_mosaic_scaled,zlim=c(-50,50),col.regions=matlab.like(255)) |
|
234 |
|
|
235 |
#png(paste("Figure7a__spatial_pattern_tmax_prediction_levelplot_",date_selected,out_prefix,".png", sep=""), |
|
236 |
# height=480*layout_m[1],width=480*layout_m[2]) |
|
237 |
#plot(r_pred,col=temp.colors(255),zlim=c(-3500,4500)) |
|
238 |
#plot(r_pred,col=matlab.like(255),zlim=c(-40,50)) |
|
239 |
#paste(raster_name[1:7],collapse="_") |
|
240 |
#add filename option later |
|
241 |
|
|
242 |
#NA_flag_val_mosaic <- -3399999901438340239948148078125514752.000 |
|
243 |
|
|
244 |
list_param_plot_raster_mosaic <- list(l_dates,r_mosaic_scaled,NA_flag_val_mosaic,out_dir,out_suffix, |
|
245 |
region_name,variable_name) |
|
246 |
names(list_param_plot_raster_mosaic) <- c("l_dates","r_mosaic_scaled","NA_flag_val_mosaic","out_dir","out_suffix", |
|
247 |
"region_name","variable_name") |
|
248 |
|
|
249 |
lf_mosaic_plot_fig <- mclapply(1:length(lf_mosaic_scaled),FUN=plot_raster_mosaic,list_param=list_param_plot_raster_mosaic,mc.preschedule=FALSE,mc.cores = num_cores) |
|
250 |
|
|
251 |
############### PART2: temporal profile ############# |
|
252 |
#### Extract time series |
|
253 |
### |
|
254 |
#-65,-22 |
|
255 |
|
|
256 |
#Use the global output?? |
|
257 |
|
|
258 |
|
|
259 |
df_points <- read.table(df_points_extracted_fname,sep=",") |
|
260 |
df_points_tmp <- df_points |
|
261 |
df_points <- as.data.frame(t(df_points)) |
|
262 |
names(df_points) <- paste0("ID_",1:ncol(df_points)) |
|
263 |
|
|
264 |
#df_centroids <- read.table(df_centroids_fname,sep=",") |
|
265 |
|
|
266 |
coordinates(df_centroids)<- c("long","lat") |
|
267 |
proj4string(df_centroids) <- CRS_locs_WGS84 |
|
268 |
## Checking new files: |
|
269 |
in_dir_mosaic <- "/nobackupp6/aguzman4/climateLayers/out/reg4/mosaics2/mosaic" |
|
270 |
#/nobackupp6/aguzman4/climateLayers/out/reg4/mosaics2/mosaic/output_reg4_*/r_m_use_edge_weights_weighted_mean_mask_gam_CAI_dailyTmax_*_reg4_*.tif |
|
271 |
pattern_str <- "r_m_use_edge_weights_weighted_mean_mask_gam_CAI_dailyTmax_.*._reg4_.*.tif" |
|
272 |
searchStr = paste(in_dir_mosaic,"/output_reg4_2014",year_processed,"/gam_CAI_dailyTmax_predicted_",pred_mod_name,"*",day_to_mosaic[i],"*.tif",sep="") |
|
273 |
|
|
274 |
#lf_mosaic_list <- list.files(path=in_dir_mosaic,pattern="*.tif",recursive=T) |
|
275 |
lf_mosaic_list <- list.files(path=in_dir_mosaic,pattern=pattern_str,recursive=T) |
|
276 |
lf_mosaic_list <- lapply(1:length(day_to_mosaic), |
|
277 |
FUN=function(i){ |
|
278 |
searchStr = paste(in_dir_tiles_tmp,"/*/",year_processed,"/gam_CAI_dailyTmax_predicted_",pred_mod_name,"*",day_to_mosaic[i],"*.tif",sep="") |
|
279 |
Sys.glob(searchStr)}) |
|
280 |
|
|
281 |
#r_mosaic_ts <- stack(lf_mosaic_list) |
|
282 |
#df_centroids <- extract(df_centroids,r_mosaic_ts) |
|
283 |
|
|
284 |
df_points$files <- lf_mosaic_list |
|
285 |
|
|
286 |
#debug(extract_date) |
|
287 |
#test <- extract_date(6431,lf_mosaic_list,12) #extract item number 12 from the name of files to get the data |
|
288 |
list_dates_produced <- unlist(mclapply(1:length(lf_mosaic_list),FUN=extract_date,x=lf_mosaic_list,item_no=14,mc.preschedule=FALSE,mc.cores = num_cores)) |
|
289 |
#list_dates_produced <- mclapply(6400:6431,FUN=extract_date,x=lf_mosaic_list,item_no=12,mc.preschedule=FALSE,mc.cores = num_cores) |
|
290 |
|
|
291 |
list_dates_produced_date_val <- as.Date(strptime(list_dates_produced,"%Y%m%d")) |
|
292 |
month_str <- format(list_dates_produced_date_val, "%b") ## Month, char, abbreviated |
|
293 |
year_str <- format(list_dates_produced_date_val, "%Y") ## Year with century |
|
294 |
day_str <- as.numeric(format(list_dates_produced_date_val, "%d")) ## numeric month |
|
295 |
|
|
296 |
df_produced <- data.frame(lf_mosaic_list,list_dates_produced_date_val,month_str,year_str,day_str) |
|
297 |
|
|
298 |
date_start <- "19840101" |
|
299 |
date_end <- "20141231" |
|
300 |
date1 <- as.Date(strptime(date_start,"%Y%m%d")) |
|
301 |
date2 <- as.Date(strptime(date_end,"%Y%m%d")) |
|
302 |
dates_range <- seq.Date(date1, date2, by="1 day") #sequence of dates |
|
303 |
|
|
304 |
missing_dates <- setdiff(as.character(dates_range),as.character(list_dates_produced_date_val)) |
|
305 |
|
|
306 |
month_str <- format(list_dates_produced_date_val, "%b") ## Month, char, abbreviated |
|
307 |
year_str <- format(list_dates_produced_date_val, "%Y") ## Year with century |
|
308 |
day_str <- as.numeric(format(list_dates_produced_date_val, "%d")) ## numeric month |
|
309 |
|
|
310 |
df_points$date <- list_dates_produced_date_val |
|
311 |
df_points$month <- month_str |
|
312 |
df_points$year <- year_str |
|
313 |
df_points$day <- day_str |
|
314 |
|
|
315 |
unique_date_tb <-table(df_points$date) |
|
316 |
unique_date <- unique(df_points$date) |
|
317 |
|
|
318 |
station_id <- 8 |
|
319 |
var_name <-paste0("ID_",station_id) |
|
320 |
|
|
321 |
##Screen for unique date values |
|
322 |
if(max(unique_date_tb)>1){ |
|
323 |
# formula_str <- paste(var_name," ~ ","TRIP_START_DATE_f",sep="") |
|
324 |
var_pix <- aggregate(ID_8 ~ date, data = df_points, mean) #aggregate by date |
|
325 |
} |
|
326 |
|
|
327 |
var_pix$ID_8 <- var_pix$ID_8*scaling |
|
328 |
|
|
329 |
d_z_tmp <- zoo(var_pix$ID_8,var_pix$date) |
|
330 |
names(d_z_tmp)<-"ID_8" |
|
331 |
min(d_z_tmp$ID_8) |
|
332 |
max(d_z_tmp$ID_8) |
|
333 |
|
|
334 |
plot(d_z_tmp) #this is the whole time series |
|
335 |
|
|
336 |
day_start <- "1986-01-01" #PARAM 12 arg 12 |
|
337 |
day_end <- "1998-12-31" #PARAM 13 arg 13 |
|
338 |
|
|
339 |
start_date <- as.Date(day_start) |
|
340 |
end_date <- as.Date(day_end) |
|
341 |
start_year <- year(start_date) |
|
342 |
end_year <- year(end_date) |
|
343 |
|
|
344 |
d_z <- window(d_z_tmp,start=start_date,end=end_date) |
|
345 |
#d_z2 <- window(d_z_tmp2,start=start_date,end=end_date) |
|
346 |
|
|
347 |
res_pix <- 1000 |
|
348 |
#res_pix <- 480 |
|
349 |
col_mfrow <- 2 |
|
350 |
row_mfrow <- 1 |
|
351 |
|
|
352 |
png_filename <- file.path(out_dir,paste("Figure5a_time_series_profile_",region_name,"_",out_suffix,".png",sep ="")) |
|
353 |
title_str <- paste("Predicted daily ",variable_name," for the ", start_year,"-",end_year," time period",sep="") |
|
354 |
|
|
355 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
356 |
|
|
357 |
plot(d_z,ylab="tmax in deg C",xlab="Daily time steps", |
|
358 |
main=title_str,cex=3,font=2, |
|
359 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
360 |
lty=3) |
|
361 |
|
|
362 |
dev.off() |
|
363 |
|
|
364 |
#### Subset for 5b |
|
365 |
|
|
366 |
day_start <- "1991-01-01" #PARAM 12 arg 12 |
|
367 |
day_end <- "1992-12-31" #PARAM 13 arg 13 |
|
368 |
|
|
369 |
start_date <- as.Date(day_start) |
|
370 |
end_date <- as.Date(day_end) |
|
371 |
start_year <- year(start_date) |
|
372 |
end_year <- year(end_date) |
|
373 |
d_z <- window(d_z_tmp,start=start_date,end=end_date) |
|
374 |
#d_z2 <- window(d_z_tmp2,start=start_date,end=end_date) |
|
375 |
|
|
376 |
res_pix <- 1000 |
|
377 |
#res_pix <- 480 |
|
378 |
col_mfrow <- 2 |
|
379 |
row_mfrow <- 1 |
|
380 |
|
|
381 |
png_filename <- file.path(out_dir,paste("Figure5b_subset_time_series_profile_",region_name,"_",out_suffix,".png",sep ="")) |
|
382 |
title_str <- paste("Predicted daily ",variable_name," for the ", start_year,"-",end_year," time period",sep="") |
|
383 |
|
|
384 |
png(filename=png_filename,width = col_mfrow * res_pix,height = row_mfrow * res_pix) |
|
385 |
|
|
386 |
plot(d_z,ylab="tmax in deg C",xlab="Daily time steps", |
|
387 |
main=title_str,cex=3,font=2, |
|
388 |
cex.main=1.5,cex.lab=1.5,font.lab=2, |
|
389 |
lty=3) |
|
390 |
|
|
391 |
dev.off() |
|
392 |
|
|
393 |
#data_pixel <- data_df[id_selected,] |
|
394 |
#data_pixel$rainfall <- as.numeric(data_pixel$rainfall) |
|
395 |
#d_z_tmp <-zoo(data_pixel$rainfall,as.Date(data_pixel$date)) |
|
396 |
#names(d_z_tmp)<- "rainfall" |
|
397 |
#data_pixel <- as.data.frame(data_pixel) |
|
398 |
#d_z_tmp2 <- zoo(data_pixel[[var_name]],as.Date(data_pixel$date)) |
|
399 |
|
|
400 |
#df_tmp <- subset(data_var,data_var$ID_stat==id_name) |
|
401 |
#if(da) |
|
402 |
|
|
403 |
|
|
404 |
############################ END OF SCRIPT ################################## |
Also available in: Unified diff
global product assessment part 1, initial commit