Project

General

Profile

« Previous | Next » 

Revision 4963bd95

Added by Benoit Parmentier almost 9 years ago

part2 assessment figure production tested and debugged on bridge

View differences:

climate/research/oregon/interpolation/global_run_scalingup_assessment_part2.R
1
  ##############################  INTERPOLATION OF TEMPERATURES  #######################################
1
##############################  INTERPOLATION OF TEMPERATURES  #######################################
2 2
#######################  Script for assessment of scaling up on NEX : part2 ##############################
3 3
#This script uses the worklfow code applied to the globe. Results currently reside on NEX/PLEIADES NASA.
4 4
#Accuracy methods are added in the the function scripts to evaluate results.
5 5
#Analyses, figures, tables and data are also produced in the script.
6 6
#AUTHOR: Benoit Parmentier 
7 7
#CREATED ON: 03/23/2014  
8
#MODIFIED ON: 01/06/2016            
8
#MODIFIED ON: 01/12/2016            
9 9
#Version: 5
10 10
#PROJECT: Environmental Layers project     
11 11
#COMMENTS: analyses for run 10 global analyses,all regions 1500x4500km with additional tiles to increase overlap 
......
18 18
#Resolved call issues from R.
19 19
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh 
20 20
#
21
#setfacl -Rmd user:aguzman4:rwx /nobackupp8/bparmen1/output_run10_1500x4500_global_analyses_pred_1992_10052015
22

  
21 23
#################################################################################################
22 24

  
23 25
#### FUNCTION USED IN SCRIPT
......
103 105
  #15) region_name  #<- c("reg4"), world if full assessment #reference region to merge if necessary #PARAM 16
104 106
  #16) df_assessment_files  #PARAM 16
105 107
  #17) threshold_missing_day  #PARM18
106
  #
108
  #18) year_predicted
107 109
  
108 110
  ### Loading R library and packages        
109 111
  #library used in the workflow production:
......
570 572
  }
571 573
  counter_fig <- counter_fig+length(threshold_missing_day) #currently 4 days...
572 574
  
575
  ### Potential
573 576
  png(filename=paste("Figure7b_number_daily_predictions_per_models","_",out_suffix,".png",sep=""),
574 577
      width=col_mfrow*res_pix,height=row_mfrow*res_pix)
575 578
  
......
784 787
  
785 788
##################### END OF SCRIPT ######################
786 789

  
790
#### Run on the bridge:
791

  
792
#args<-commandArgs(TRUE)
793
#script_path<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/oregon/interpolation"
794
#dataHome<-"/nobackupp6/aguzman4/climateLayers/interp/testdata/"
795
#script_path2<-"/nobackupp6/aguzman4/climateLayers/finalCode/environmental-layers/climate/research/world/interpolation"
796

  
797
#CALLED FROM MASTER SCRIPT:
798

  
799
script_path <- "/nobackupp8/bparmen1/env_layers_scripts" #path to script
800
function_assessment_part1_functions <- "global_run_scalingup_assessment_part1_functions_02112015.R" #PARAM12
801
function_assessment_part1a <-"global_run_scalingup_assessment_part1a_01042016.R"
802
function_assessment_part2 <- "global_run_scalingup_assessment_part2_01062016.R"
803
function_assessment_part2_functions <- "global_run_scalingup_assessment_part2_functions_01032016.R"
804
source(file.path(script_path,function_assessment_part1_functions)) #source all functions used in this script 
805
source(file.path(script_path,function_assessment_part1a)) #source all functions used in this script 
806
source(file.path(script_path,function_assessment_part2)) #source all functions used in this script 
807
source(file.path(script_path,function_assessment_part2_functions)) #source all functions used in this script 
808

  
809
### Parameters and arguments ###
810
  
811
var<-"TMAX" # variable being interpolated
812
if (var == "TMAX") {
813
  y_var_name <- "dailyTmax"
814
  y_var_month <- "TMax"
815
}
816
if (var == "TMIN") {
817
  y_var_name <- "dailyTmin"
818
  y_var_month <- "TMin"
819
}
820

  
821
#interpolation_method<-c("gam_fusion") #other otpions to be added later
822
interpolation_method<-c("gam_CAI")
823
CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs";
824
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
825
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
826

  
827
out_region_name<-""
828
list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)")
829

  
830
#reg1 (North Am), reg2(Europe),reg3(Asia), reg4 (South Am), reg5 (Africa), reg6 (Australia-Asia)
831
#master directory containing the definition of tile size and tiles predicted
832
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out/"
833
#/nobackupp6/aguzman4/climateLayers/out_15x45/1982
834

  
835
#region_names <- c("reg23","reg4") #selected region names, #PARAM2
836
region_name <- c("reg4") #run assessment by region, this is a unique region only
837
#region_names <- c("reg1","reg2","reg3","reg4","reg5","reg6") #selected region names, #PARAM2
838
interpolation_method <- c("gam_CAI") #PARAM4
839
out_prefix <- "run_global_analyses_pred_12282015" #PARAM5
840
#out_dir <- "/nobackupp8/bparmen1/" #PARAM6
841
out_dir <- "/nobackupp8/bparmen1/output_run_global_analyses_pred_12282015"
842
#out_dir <-paste(out_dir,"_",out_prefix,sep="")
843
create_out_dir_param <- FALSE #PARAM7
844

  
845
#CRS_interp<-"+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs";
846
#CRS_interp <-"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
847
CRS_locs_WGS84<-CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0") #Station coords WGS84
848

  
849
#list_year_predicted <- 1984:2004
850
list_year_predicted <- c("2014")
851
#year_predicted <- list_year_predicted[1]
852

  
853
file_format <- ".tif" #format for mosaiced files #PARAM10
854
NA_flag_val <- -9999  #No data value, #PARAM11
855
num_cores <- 6 #number of cores used #PARAM13
856
plotting_figures <- TRUE #running part2 of assessment to generate figures...
857
  
858
##Additional parameters used in part 2, some these may be removed as code is simplified
859
mosaic_plot <- FALSE #PARAM14
860
day_to_mosaic <- c("19920102","19920103","19920103") #PARAM15
861
multiple_region <- TRUE #PARAM16
862
countries_shp <- "/nobackupp8/bparmen1/NEX_data/countries.shp" #PARAM17
863
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #Atlas
864
plot_region <- TRUE  #PARAM18
865
threshold_missing_day <- c(367,365,300,200)#PARAM19
866

  
867
year_predicted <- list_year_predicted[1]
868
in_dir <- out_dir #PARAM 0
869
#y_var_name <- "dailyTmax" #PARAM1 , already set
870
#interpolation_method <- c("gam_CAI") #PARAM2, already set
871
out_suffix <- out_prefix #PARAM3
872
#out_dir <-  #PARAM4, already set
873
create_out_dir_param <- FALSE #PARAM 5, already created and set
874
#mosaic_plot <- FALSE #PARAM6
875
#if daily mosaics NULL then mosaicas all days of the year
876
#day_to_mosaic <- c("19920101","19920102","19920103") #PARAM7
877
#CRS_locs_WGS84 already set
878
proj_str <- CRS_locs_WGS84 #PARAM 8 #check this parameter
879
#file_format <- ".rst" #PARAM 9, already set
880
#NA_flag_val <- -9999 #PARAM 11, already set
881
#multiple_region <- TRUE #PARAM 12
882
#countries_shp <-"/data/project/layers/commons/NEX_data/countries.shp" #PARAM 13, copy this on NEX too
883
#plot_region <- TRUE
884
#num_cores <- 6 #PARAM 14, already set
885
#region_name <- c("reg4") #reference region to merge if necessary, if world all the regions are together #PARAM 16
886
#use previous files produced in step 1a and stored in a data.frame
887
df_assessment_files_name <- "df_assessment_files_reg4_2014_run_global_analyses_pred_12282015.txt"# #PARAM 17, set in the script
888
df_assessment_files <- read.table(df_assessment_files_name,stringsAsFactors=F,sep=",")
889
#threshold_missing_day <- c(367,365,300,200) #PARM18
890

  
891
list_param_run_assessment_plotting <-list(
892
    in_dir,y_var_name, interpolation_method, out_suffix,
893
    out_dir, create_out_dir_param, mosaic_plot, proj_str, file_format, NA_flag_val,
894
    multiple_region, countries_shp, plot_region, num_cores,
895
    region_name, df_assessment_files_name, threshold_missing_day,year_predicted
896
  )
897

  
898
names(list_param_run_assessment_plotting) <- c(
899
    "in_dir","y_var_name","interpolation_method","out_suffix",
900
    "out_dir","create_out_dir_param","mosaic_plot","proj_str","file_format","NA_flag_val",
901
    "multiple_region","countries_shp","plot_region","num_cores",
902
    "region_name","df_assessment_files_name","threshold_missing_day","year_predicted"
903
  )
904

  
905
#function_assessment_part2 <- "global_run_scalingup_assessment_part2_01032016.R"
906
#source(file.path(script_path,function_assessment_part2)) #source all functions used in this script
907

  
908
debug(run_assessment_plotting_prediction_fun)
909
df_assessment_figures_files <-
910
  run_assessment_plotting_prediction_fun(list_param_run_assessment_plotting)
911

  
912

  
913

  
914

  
915

  
916

  
917

  
918

  
919

  
920

  
921

  
922

  
923

  
924

  
925

  
926

  
927

  
928

  
929

  
930

  
931

  
932

  
933

  
934

  
935

  
936

  
937

  
938

  
939

  
940

  
941

  
942

  
943
#### CURRENT ERROR ON NEX
944

  
787 945
# #comments                                                                     #figure_no    #region   #models       
788 946
# tile processed for the region                                           figure_1           reg4        NA
789 947
# boxplot with outlier                                                        figure_2a          reg4        mod1

Also available in: Unified diff