Project

General

Profile

« Previous | Next » 

Revision 4b605f4a

Added by Benoit Parmentier about 8 years ago

  • ID 4b605f4ae8bd048332b9c35bc9dfbc15f836981d
  • Parent 84022daa

full testing from shell with removal of tmp files

View differences:

climate/research/oregon/interpolation/global_product_assessment_part0.R
9 9
#
10 10
#AUTHOR: Benoit Parmentier 
11 11
#CREATED ON: 10/27/2016  
12
#MODIFIED ON: 11/28/2016            
12
#MODIFIED ON: 12/01/2016            
13 13
#Version: 1
14 14
#PROJECT: Environmental Layers project     
15 15
#COMMENTS: 
......
20 20
#source /nobackupp6/aguzman4/climateLayers/sharedModules2/etc/environ.sh 
21 21
#
22 22
#setfacl -Rm u:aguzman4:rwx /nobackupp6/aguzman4/climateLayers/LST_tempSpline/
23
#COMMIT: making callable from shel for function of number of predictions for day with missing tiles 
23
#COMMIT: testing option to remove tmp files
24 24

  
25 25
### Testing several years on the bridge before running jobs on nodes with qsub
26 26
#Use the following command to run as script via the shell on the bridge 
......
93 93
source(file.path(script_path,function_assessment_part3)) #source all functions used in this script 
94 94

  
95 95
#Product assessment
96
function_product_assessment_part0_functions <- "global_product_assessment_part0_functions_11302016.R"
96
function_product_assessment_part0_functions <- "global_product_assessment_part0_functions_12012016.R"
97 97
source(file.path(script_path,function_product_assessment_part0_functions)) #source all functions used in this script 
98 98
##Don't load part 1 and part2, mosaic package does not work on NEX
99 99
#function_product_assessment_part1_functions <- "global_product_assessment_part1_functions_09192016b.R"
......
104 104
###############################
105 105
####### Parameters, constants and arguments ###
106 106

  
107
#Rscript /nobackupp8/bparmen1/env_layers_scripts/global_product_assessment_part0_11272016.R TMAX /nobackupp6/aguzman4/climateLayers/out/reg6/assessment reg6 predictions_assessment_reg6_10302016 /nobackupp8/bparmen1/climateLayers/out/reg6/assessment TRUE 2000 6 1e+07 9 rmse 20000101 20001231 /nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg6.tif /nobackupp6/aguzman4/climateLayers/out var_pred
107
#Rscript /nobackupp8/bparmen1/env_layers_scripts/global_product_assessment_part0_12012016.R TMAX /nobackupp6/aguzman4/climateLayers/out/reg6/assessment reg6 predictions_assessment_reg6_10302016 /nobackupp8/bparmen1/climateLayers/out/reg6/assessment TRUE 2000 6 1e+07 9 rmse 20000101 20001231 /nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg6.tif /nobackupp6/aguzman4/climateLayers/out var_pred FALSE FALSE
108
#Rscript /nobackupp8/bparmen1/env_layers_scripts/global_product_assessment_part0_12012016.R TMAX /nobackupp6/aguzman4/climateLayers/out/reg6/assessment reg6 predictions_tiles_assessment_reg6_2000 /nobackupp8/bparmen1/climateLayers/out/reg6/assessment TRUE 2000 6 1e+07 9 rmse 20000101 20001231 /nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg6.tif /nobackupp6/aguzman4/climateLayers/out var_pred FALSE FALSE
108 109

  
109 110
### ARGUMENTS: inputs parameters set from the command line
110 111

  
111 112
var <- args[1] # variable being interpolated #param 1, arg 1
112
in_dir <- args[2] #PARAM2,#region_name <- "reg4" #PARAM 3 #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3
113
region_name <- args[3] #PARAM3
114
out_suffix <- args[4] #PARAM 4
115
out_suffix_str <- region_name #PARAM 4, CONST 3
116
out_dir <- args[5] #PARAM 5
117
create_out_dir_param <- args[6] #PARAM 6
118
year_predicted <- args[7] #PARAM 7
119
num_cores <- args[8] #PARAM 8
120
max_mem<-args[9] #PARAM 9
121
##mosaicing_method <- c("unweighted","use_edge_weights") #PARAM10
122
item_no <- args[10] #PARAM10
123
metric_name <- args[11]
124
day_start <- args[12] #PARAM 12
125
day_end <- args[13] #PARAM 13
126
infile_mask <- args[14]
113
in_dir <- args[2] #input dir containing tiles predictions from stage 4 workflow
114
region_name <- args[3] #PARAM3  #reg4 South America, Africa reg5,Europe reg2, North America reg1, Asia reg3
115
out_suffix <- args[4] #PARAM 4 # output suffix, add region and year of assessment
116
out_dir <- args[5] #PARAM 5, parent output dir, a new dir is generated using the "output_"+out_suffix 
117
create_out_dir_param <- args[6] #PARAM 6, if true create out_dir otherwise use given out_dir
118
year_predicted <- args[7] #PARAM 7, year being assessed
119
num_cores <- args[8] #PARAM 8, number of cores used in the parraleliation
120
max_mem<-args[9] #PARAM 9, maximum memory used in raster package
121
item_no <- args[10] #PARAM10, string position of date in tile tif prediciton, use 9 as default
122
metric_name <- args[11] #PARAM 11, prediction or accuracy: rmse, mae
123
day_start <- args[12] #PARAM 12, start of day to process
124
day_end <- args[13] #PARAM 13, end of day to process
125
infile_mask <- args[14]#PARAM 14, input mask file for the region
127 126
in_dir1 <- args[15] #PARAM 15, files containing assessment information
128
layers_option <- args[16] # PARAM 17 options are:
129
tmp_files <- args[17]
127
layers_option <- args[16] # PARAM 16 options are: prediction or accuracy
128
tmp_files <- args[17] # PARAM 17, if FALSE, temporary files are removed
129
plotting_figures <- args[18]# PARAM 18, if TRUE, png files are produced for missing tiles and day predicted
130 130

  
131 131
#### values used for testing
132
var <- "TMAX" # variable being interpolated #PARAM 1, arg 1
133
in_dir <- "/nobackupp6/aguzman4/climateLayers/out/reg6/assessment" #PARAM2
134
region_name <- c("reg6") #PARAM 3, arg 3
135
out_suffix <- "predictions_assessment_reg6_11302016" #PARAM 4
136
#out_suffix_str <- region_name #PARAM 4, CONST 3
137
out_dir <- "/nobackupp6/aguzman4/climateLayers/out/reg6/assessment" #PARAM 5
138
out_dir <- "/nobackupp8/bparmen1/climateLayers/out/reg6/assessment"
139
create_out_dir_param <- TRUE #PARAM 12, arg 6
140
year_predicted <- c(2000) #PARAM 7, arg7
141
num_cores <- 6 #number of cores used # PARAM 8, arg 8
142
max_mem <- 1e+07 #PARAM 9
143
#mosaicing_method <- args[10] #PARAM10
144
item_no <- 9 #PARAM 10, arg 10
145
metric_name <- "rmse" # "mae", "r" for MAE, R etc.; can also be ns or nv? #PARAM 11, arg 11
146
day_start <- "20000101" #PARAM 12, arg 12
147
day_end <- "20001231" #PARAM 13, arg 13
148
infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg6.tif" #PARAM 14, arg 14
149
in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out" # PARAM 15 On NEX
150
layers_option <- c("var_pred") #PARAM 16, arg 16
151
tmp_files <- FALSE #PARAM 17, arg 17
132
# var <- "TMAX" # variable being interpolated #PARAM 1, arg 1
133
# in_dir <- "/nobackupp6/aguzman4/climateLayers/out/reg6/assessment" #PARAM2
134
# region_name <- c("reg6") #PARAM 3, arg 3
135
# out_suffix <- "predictions_tiles_assessment_reg6_2000" #PARAM 4
136
# #out_suffix_str <- region_name #PARAM 4, CONST 3
137
# #out_dir <- "/nobackupp6/aguzman4/climateLayers/out/reg6/assessment" #PARAM 5
138
# out_dir <- "/nobackupp8/bparmen1/climateLayers/out/reg6/assessment"
139
# create_out_dir_param <- TRUE #PARAM 12, arg 6
140
# year_predicted <- c(2000) #PARAM 7, arg7
141
# num_cores <- 6 #number of cores used # PARAM 8, arg 8
142
# max_mem <- 1e+07 #PARAM 9
143
# #mosaicing_method <- args[10] #PARAM10
144
# item_no <- 9 #PARAM 10, arg 10
145
# metric_name <- "rmse" # "mae", "r" for MAE, R etc.; can also be ns or nv? #PARAM 11, arg 11
146
# day_start <- "20000101" #PARAM 12, arg 12
147
# day_end <- "20001231" #PARAM 13, arg 13
148
# infile_mask <- "/nobackupp8/bparmen1/NEX_data/regions_input_files/r_mask_LST_reg6.tif" #PARAM 14, arg 14
149
# in_dir1 <- "/nobackupp6/aguzman4/climateLayers/out" # PARAM 15 On NEX
150
# layers_option <- c("var_pred") #PARAM 16, arg 16
151
# tmp_files <- FALSE #PARAM 17, arg 17
152
# plotting_figures <- FALSE #PARAm 18, arg 18
152 153

  
153 154
###################
154 155
### CONSTANT: not set from command line
......
162 163
interpolation_method<-c("gam_CAI") #PARAM 2
163 164
day_to_mosaic_range <- NULL #PARAM 7
164 165
file_format <- ".tif" #format for mosaiced files # PARAM 14
165
plotting_figures <- TRUE #running part2 of assessment to generate figures... # PARAM 13
166 166
#python_bin <- "/usr/bin" #PARAM 15, NCEAS
167 167
python_bin <- "/nobackupp6/aguzman4/climateLayers/sharedModules2/bin" #PARAM 15"
168 168
in_dir_list_filename <- NULL # PARAM 16, if NULL, use the in_dir directory to search for info
......
171 171
lf_raster <- NULL #list of raster to consider #PARAM 18
172 172
scaling <- 1
173 173
data_type <- "Int16"
174
#CRS_interp <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +towgs84=0,0,0" #param 3
175
#list_models<-c("y_var ~ s(lat,lon,k=5) + s(elev_s,k=3) + s(LST,k=3)") #param 4
174
out_suffix_str <- region_name #PARAM 4, CONST 3
176 175

  
177 176
##Add for precip later...
178 177
if (var == "TMAX") {
......
220 219
                                             "pred_mod_name","metric_name")
221 220

  
222 221
#Product assessment
223
function_product_assessment_part0_functions <- "global_product_assessment_part0_functions_11302016.R"
224
source(file.path(script_path,function_product_assessment_part0_functions)) #source all functions used in this script 
222
#function_product_assessment_part0_functions <- "global_product_assessment_part0_functions_12012016.R"
223
#source(file.path(script_path,function_product_assessment_part0_functions)) #source all functions used in this script 
225 224

  
226 225
#debug(predictions_tiles_missing_fun)
227
#Started at 11.06pm
226
#Started at 9.35am
228 227
obj_predictions_tiles_missing_fun <- predictions_tiles_missing_fun(list_param=list_param_predictions_tiles_missing)
229

  
228
 
229
###Generate summary from object here to simplify output?
230 230

  
231 231
############################ END OF SCRIPT ##################################
232 232

  

Also available in: Unified diff