1
|
# Snippets of GDAL commands and R code for processing DEMs
|
2
|
# Jim Regetz
|
3
|
# Created on 08-Jun-2011
|
4
|
#
|
5
|
# Note: Working with the original ASTERs yields this warning from GDAL:
|
6
|
# Warning 1: TIFFReadDirectoryCheckOrder:Invalid TIFF directory;
|
7
|
# tags are not sorted in ascending order
|
8
|
#
|
9
|
# I first ran gdal_translate on each of the ASTERs, then repeated the
|
10
|
# vrt/warp on those (without warnings), but the output was the same as
|
11
|
# when I operated on the original files (with warnings), so for the
|
12
|
# moment I'm just going to ignore the warnings?
|
13
|
|
14
|
#=======================================================================
|
15
|
# bash -- resample source DEMs into desired grids near the 60N boundary
|
16
|
#=======================================================================
|
17
|
|
18
|
# generate strips of data along a 40-degree longitudinal extent matching
|
19
|
# (at least one of) Rick's mosaicked CDEM grids; strips extend 150
|
20
|
# pixels south of border and (in case of aster) north of border
|
21
|
|
22
|
# these are currently correct on vulcan
|
23
|
export ASTDIR="/home/reeves/active_work/EandO/asterGdem"
|
24
|
export SRTMDIR="/home/reeves/active_work/EandO/CgiarSrtm/SRTM_90m_ASCII_4_1"
|
25
|
|
26
|
# SRTM (also convert to 16bit integer)
|
27
|
gdalbuildvrt srtm.vrt $SRTMDIR/srtm_*_01.asc
|
28
|
gdalwarp -ot Int16 -te -136 59.875 -96 60 -ts 48000 150 -r bilinear \
|
29
|
srtm.vrt srtm_150below.tif
|
30
|
|
31
|
# ASTER
|
32
|
gdalbuildvrt aster.vrt $ASTDIR/ASTGTM_N59*W*_dem.tif \
|
33
|
$ASTDIR/ASTGTM_N60*W*_dem.tif
|
34
|
gdalwarp -te -136 59.875 -96 60 -ts 48000 150 -r bilinear \
|
35
|
aster.vrt aster_150below.tif
|
36
|
gdalwarp -te -136 60 -96 60.125 -ts 48000 150 -r bilinear \
|
37
|
aster.vrt aster_150above.tif
|
38
|
|
39
|
# note that the top 150 rows of this one are, somewhat surprisingly,
|
40
|
# slightly different from the above!
|
41
|
# gdalwarp -te -136 59.875 -96 60.125 -ts 48000 300 -r bilinear \
|
42
|
# aster.vrt aster_300straddle.tif
|
43
|
#
|
44
|
# and this yields an even different set of values
|
45
|
# gdalbuildvrt aster_N60.vrt $ASTDIR/ASTGTM_N60*W*_dem.tif
|
46
|
# gdalwarp -te -136 60 -96 60.125 -ts 48000 150 -r bilinear \
|
47
|
# aster_N60.vrt aster_150above.tif
|
48
|
|
49
|
#=======================================================================
|
50
|
# R -- apply several kinds of boundary fixes and write out new GeoTIFFs
|
51
|
#=======================================================================
|
52
|
|
53
|
library(raster)
|
54
|
|
55
|
# load relevant SRTM and ASTER data
|
56
|
srtm.south <- raster("srtm_150below.tif")
|
57
|
aster.south <- raster("aster_150below.tif")
|
58
|
aster.north <- raster("aster_150above.tif")
|
59
|
|
60
|
# create difference raster for area of overlap
|
61
|
delta.south <- srtm.south - aster.south
|
62
|
|
63
|
#
|
64
|
# OPTION 1
|
65
|
#
|
66
|
|
67
|
# smooth to the north, by calculating the deltas _at_ the boundary,
|
68
|
# ramping them down to zero with increasing distance from the border,
|
69
|
# and adding them to the north ASTER values
|
70
|
|
71
|
# create simple grid indicating distance (in units of pixels) north from
|
72
|
# boundary, starting at 1 (this is used for both option 1 and option 2)
|
73
|
aster.north.matrix <- as.matrix(aster.north)
|
74
|
ydistN <- nrow(aster.north.matrix) + 1 - row(aster.north.matrix)
|
75
|
|
76
|
# 1b. linear ramp north from SRTM edge
|
77
|
# -- Rick is doing this --
|
78
|
|
79
|
# 2b. exponential ramp north from SRTM edge
|
80
|
# -- Rick is also doing this, but here it is... --
|
81
|
r <- -0.045
|
82
|
w <- exp(ydistN*r)
|
83
|
aster.north.smooth <- aster.north
|
84
|
aster.north.smooth[] <- values(aster.north) + as.integer(round(t(w) *
|
85
|
as.matrix(delta.south)[1,]))
|
86
|
writeRaster(aster.north.smooth, file="aster_150above_rampexp.tif")
|
87
|
|
88
|
#
|
89
|
# OPTION 2
|
90
|
#
|
91
|
|
92
|
# smooth to the north, by first using LOESS with values south of 60N to
|
93
|
# model deltas as a function of observed ASTER, then applying the model
|
94
|
# to predict pixel-wise deltas north of 60N, then ramping these
|
95
|
# predicted deltas to zero with increasing distance from the border, and
|
96
|
# adding them to the associated ASTER values
|
97
|
|
98
|
# first fit LOESS on a random subsample of data
|
99
|
# note: doing all the data takes too long, and even doing 50k points
|
100
|
# seems to be too much for calculating SEs during predict step
|
101
|
set.seed(99)
|
102
|
samp <- sample(ncell(aster.south), 10000)
|
103
|
sampdata <- data.frame(delta=values(delta.south)[samp],
|
104
|
aster=values(aster.south)[samp])
|
105
|
lo.byaster <- loess(delta ~ aster, data=sampdata)
|
106
|
|
107
|
# now create ASTER prediction grid north of 60N
|
108
|
# TODO: deal with NAs in data (or make sure they are passed through
|
109
|
# properly in the absence of explicit treatment)?
|
110
|
aster.north.pdelta <- aster.north
|
111
|
aster.north.pdelta[] <- predict(lo.byaster, values(aster.north))
|
112
|
# for actual north ASTER values that exceed the max value used to fit
|
113
|
# LOESS, just use the prediction associated with the maximum
|
114
|
aster.north.pdelta[aster.north<min(sampdata$aster)] <- predict(lo.byaster,
|
115
|
data.frame(aster=min(sampdata$aster)))
|
116
|
# for actual north ASTER value less than the min value used to fit
|
117
|
# LOESS, just use the prediction associated with the minimum
|
118
|
aster.north.pdelta[aster.north>max(sampdata$aster)] <- predict(lo.byaster,
|
119
|
data.frame(aster=max(sampdata$aster)))
|
120
|
|
121
|
# 2a: exponential distance-weighting of LOESS predicted deltas
|
122
|
r <- -0.045
|
123
|
w <- exp(ydistN*r)
|
124
|
aster.north.smooth <- aster.north
|
125
|
aster.north.smooth[] <- values(aster.north) + as.integer(round(t(w *
|
126
|
as.matrix(aster.north.pdelta))))
|
127
|
writeRaster(aster.north.smooth, file="aster_150above_predexp.tif")
|
128
|
|
129
|
# 2b: gaussian distance-weighting of LOESS predicted deltas
|
130
|
r <- -0.001 # weight drops to 0.5 at ~26 cells, ie 2.4km at 3" res
|
131
|
w <- exp(-0.001*ydistN^2)
|
132
|
aster.north.smooth <- aster.north
|
133
|
aster.north.smooth[] <- values(aster.north) + as.integer(round(t(w *
|
134
|
as.matrix(aster.north.pdelta))))
|
135
|
writeRaster(aster.north.smooth, file="aster_150above_predgau.tif")
|
136
|
|
137
|
#
|
138
|
# OPTION 3
|
139
|
#
|
140
|
|
141
|
# smooth to the south, now by simply taking pixel-wise averages of the
|
142
|
# observed SRTM and ASTER using a distance-based weighting function such
|
143
|
# that the relative contribution of ASTER decays to zero over a few km
|
144
|
|
145
|
# create simple grid indicating distance (in units of pixels) south from
|
146
|
# boundary, starting at 1
|
147
|
aster.south.matrix <- as.matrix(aster.south)
|
148
|
ydistS <- row(aster.south.matrix)
|
149
|
|
150
|
# 3a: gaussian weighting function
|
151
|
r <- -0.001 # weight drops to 0.5 at ~26 cells, or 2.4km at 3" res
|
152
|
w <- exp(-0.001*ydistS^2)
|
153
|
aster.south.smooth <- aster.south
|
154
|
aster.south.smooth[] <- values(srtm.south) - as.integer(round(t(w *
|
155
|
as.matrix(delta.south))))
|
156
|
aster.south.smooth[aster.south.smooth<0] <- 0
|
157
|
writeRaster(aster.south.smooth, file="dem_150below_blendgau.tif")
|
158
|
|
159
|
|
160
|
#=======================================================================
|
161
|
# bash -- fuse DEMS, generate hillshade
|
162
|
#=======================================================================
|
163
|
|
164
|
#
|
165
|
# create simple fused layers
|
166
|
#
|
167
|
|
168
|
# uncorrected fused layer
|
169
|
gdalwarp -ot Int16 -te -136 59.875 -96 60.125 -ts 48000 300 \
|
170
|
srtm_150below.tif aster_150above.tif fused_300straddle.tif
|
171
|
|
172
|
# exponential ramp of boundary delta to the north
|
173
|
gdalwarp -ot Int16 -te -136 59.875 -96 60.125 -ts 48000 300 \
|
174
|
srtm_150below.tif aster_150above_rampexp.tif fused_300straddle_rampexp.tif
|
175
|
|
176
|
# exponential blend of predicted deltas to the north
|
177
|
gdalwarp -ot Int16 -te -136 59.875 -96 60.125 -ts 48000 300 \
|
178
|
srtm_150below.tif aster_150above_predexp.tif fused_300straddle_predexp.tif
|
179
|
|
180
|
# gaussian blend of predicted deltas to the north
|
181
|
gdalwarp -ot Int16 -te -136 59.875 -96 60.125 -ts 48000 300 \
|
182
|
srtm_150below.tif aster_150above_predgau.tif fused_300straddle_predgau.tif
|
183
|
|
184
|
# gaussian blend of SRTM/ASTER to the south
|
185
|
gdalwarp -ot Int16 -te -136 59.875 -96 60.125 -ts 48000 300 \
|
186
|
dem_150below_blendgau.tif aster_150above.tif fused_300straddle_blendgau.tif
|
187
|
|
188
|
#
|
189
|
# hillshade the different fused DEMs created above
|
190
|
#
|
191
|
|
192
|
gdaldem hillshade -s 111120 fused_300straddle.tif fused_300straddle_hs.tif
|
193
|
gdaldem hillshade -s 111120 fused_300straddle_rampexp.tif fused_300straddle_rampexp_hs.tif
|
194
|
gdaldem hillshade -s 111120 fused_300straddle_predexp.tif fused_300straddle_predexp_hs.tif
|
195
|
gdaldem hillshade -s 111120 fused_300straddle_predgau.tif fused_300straddle_predgau_hs.tif
|
196
|
gdaldem hillshade -s 111120 fused_300straddle_blendgau.tif fused_300straddle_blendgau_hs.tif
|
197
|
|
198
|
|
199
|
#=======================================================================
|
200
|
# R -- generate some quick hillshade visuals of a 1-degree wide swath
|
201
|
#=======================================================================
|
202
|
|
203
|
library(raster)
|
204
|
|
205
|
uncorrected <- raster("fused_300straddle_hs.tif")
|
206
|
rampexp <- raster("fused_300straddle_rampexp_hs.tif")
|
207
|
blendgau <- raster("fused_300straddle_blendgau_hs.tif")
|
208
|
|
209
|
window <- extent(-135, -134, 59.875, 60.125)
|
210
|
|
211
|
png("boundary-hillshade.png", height=8, width=8, units="in", res=600)
|
212
|
par(mfrow=c(3,1))
|
213
|
plot(crop(uncorrected, window), main="uncorrected (hillshade)")
|
214
|
plot(crop(rampexp, window), main="north exponential ramp (hillshade)")
|
215
|
plot(crop(blendgau, window), main="south gaussian blend (hillshade)")
|
216
|
dev.off()
|