Revision 51833ab5
Added by Benoit Parmentier almost 12 years ago
climate/research/oregon/interpolation/results_interpolation_date_output_analyses.R | ||
---|---|---|
1 |
################## Validation and analyses of results ####################################### |
|
2 |
############################ Covariate production for a given tile/region ########################################## |
|
3 |
#This script examines inputs and outputs from the interpolation step. |
|
4 |
#Part 1: Script produces plots for every selected date |
|
5 |
#Part 2: Examine |
|
6 |
#AUTHOR: Benoit Parmentier |
|
7 |
#DATE: 02/22/2013 |
|
8 |
|
|
9 |
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#???-- |
|
10 |
|
|
11 |
##Comments and TODO: |
|
12 |
#Separate inteprolation results analyses from covariates analyses |
|
13 |
|
|
14 |
################################################################################################## |
|
15 |
|
|
16 |
###Loading R library and packages |
|
17 |
library(RPostgreSQL) |
|
18 |
library(sp) # Spatial pacakge with class definition by Bivand et al. |
|
19 |
library(spdep) # Spatial pacakge with methods and spatial stat. by Bivand et al. |
|
20 |
library(rgdal) # GDAL wrapper for R, spatial utilities |
|
21 |
library(raster) |
|
22 |
library(gtools) |
|
23 |
library(rasterVis) |
|
24 |
library(graphics) |
|
25 |
library(grid) |
|
26 |
library(lattice) |
|
27 |
|
|
28 |
### Parameters and arguments |
|
29 |
|
|
30 |
##Paths to inputs and output |
|
31 |
in_path <- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/input_data/" |
|
32 |
out_path<- "/home/parmentier/Data/IPLANT_project/Venezuela_interpolation/Venezuela_01142013/output_data/" |
|
33 |
infile3<-"covariates__venezuela_region__VE_01292013.tif" #this is an output from covariate script |
|
34 |
|
|
35 |
setwd(in_path) |
|
36 |
|
|
37 |
### Functions used in the script |
|
38 |
|
|
39 |
load_obj <- function(f) |
|
40 |
{ |
|
41 |
env <- new.env() |
|
42 |
nm <- load(f, env)[1] |
|
43 |
env[[nm]] |
|
44 |
} |
|
45 |
|
|
46 |
### PLOTTING RESULTS FROM VENEZUELA INTERPOLATION FOR ANALYSIS |
|
47 |
|
|
48 |
#Select relevant dates and load R objects created during the interpolation step |
|
49 |
|
|
50 |
date_selected<-c("20100103") |
|
51 |
|
|
52 |
gam_fus_mod<-load_obj("gam_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
53 |
validation_obj<-load_obj("gam_fus_validation_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
54 |
clim_obj<-load_obj("gamclim_fus_mod_365d_GAM_fus5_all_lstd_02202013.RData") |
|
55 |
|
|
56 |
#determine index position matching date selected |
|
57 |
|
|
58 |
i_dates<-vector("list",length(date_selected)) |
|
59 |
for (i in 1:length(gam_fus_mod)){ |
|
60 |
for (j in 1:length(date_selected)){ |
|
61 |
if(gam_fus_mod[[i]]$sampling_dat$date==date_selected[j]){ |
|
62 |
i_dates[[j]]<-i |
|
63 |
} |
|
64 |
} |
|
65 |
} |
|
66 |
|
|
67 |
#Examine the first select date add loop or function later |
|
68 |
j=1 |
|
69 |
|
|
70 |
date<-strptime(date_selected[j], "%Y%m%d") # interpolation date being processed |
|
71 |
month<-strftime(date, "%m") # current month of the date being processed |
|
72 |
|
|
73 |
#Get raster stack of interpolated surfaces |
|
74 |
index<-i_dates[[j]] |
|
75 |
pred_temp<-as.character(gam_fus_mod[[index]]$dailyTmax) #list of files |
|
76 |
rast_pred_temp<-stack(pred_temp) #stack of temperature predictions from models |
|
77 |
|
|
78 |
#Get validation metrics, daily spdf training and testing stations, monthly spdf station input |
|
79 |
sampling_dat<-gam_fus_mod[[index]]$sampling_dat |
|
80 |
metrics_v<-validation_obj[[index]]$metrics_v |
|
81 |
metrics_s<-validation_obj[[index]]$metrics_s |
|
82 |
data_v<-validation_obj[[index]]$data_v |
|
83 |
data_s<-validation_obj[[index]]$data_s |
|
84 |
data_month<-clim_obj[[index]]$data_month |
|
85 |
|
|
86 |
#Adding layer LST to the raster stack of covariates |
|
87 |
#The names of covariates can be changed... |
|
88 |
rnames <-c("x","y","lon","lat","N","E","N_w","E_w","elev","slope","aspect","CANHEIGHT","DISTOC") |
|
89 |
lc_names<-c("LC1","LC2","LC3","LC4","LC5","LC6","LC7","LC8","LC9","LC10","LC11","LC12") |
|
90 |
lst_names<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12", |
|
91 |
"nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08", |
|
92 |
"nobs_09","nobs_10","nobs_11","nobs_12") |
|
93 |
|
|
94 |
covar_names<-c(rnames,lc_names,lst_names) |
|
95 |
|
|
96 |
s_raster<-stack(infile3) #read in the data stack |
|
97 |
names(s_raster)<-covar_names #Assigning names to the raster layers: making sure it is included in the extraction |
|
98 |
|
|
99 |
LST_month<-paste("mm_",month,sep="") # name of LST month to be matched |
|
100 |
pos<-match("LST",layerNames(s_raster)) #Find the position of the layer with name "LST", if not present pos=NA |
|
101 |
s_raster<-dropLayer(s_raster,pos) # If it exists drop layer |
|
102 |
pos<-match(LST_month,layerNames(s_raster)) #Find column with the current month for instance mm12 |
|
103 |
r1<-raster(s_raster,layer=pos) #Select layer from stack |
|
104 |
layerNames(r1)<-"LST" |
|
105 |
#Get mask image!! |
|
106 |
|
|
107 |
date_proc<-strptime(sampling_dat$date, "%Y%m%d") # interpolation date being processed |
|
108 |
mo<-as.integer(strftime(date_proc, "%m")) # current month of the date being processed |
|
109 |
day<-as.integer(strftime(date_proc, "%d")) |
|
110 |
year<-as.integer(strftime(date_proc, "%Y")) |
|
111 |
datelabel=format(ISOdate(year,mo,day),"%b %d, %Y") |
|
112 |
|
|
113 |
## Figure 1: LST_TMax_scatterplot |
|
114 |
|
|
115 |
rmse<-metrics_v$rmse[nrow(metrics_v)] |
|
116 |
rmse_f<-metrics_s$rmse[nrow(metrics_s)] |
|
117 |
|
|
118 |
png(paste("LST_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
119 |
out_prefix,".png", sep="")) |
|
120 |
plot(data_month$TMax,data_month$LST,xlab="Station mo Tmax",ylab="LST mo Tmax") |
|
121 |
title(paste("LST vs TMax for",datelabel,sep=" ")) |
|
122 |
abline(0,1) |
|
123 |
nb_point<-paste("n=",length(data_month$TMax),sep="") |
|
124 |
mean_bias<-paste("Mean LST bias= ",format(mean(data_month$LSTD_bias,na.rm=TRUE),digits=3),sep="") |
|
125 |
#Add the number of data points on the plot |
|
126 |
legend("topleft",legend=c(mean_bias,nb_point),bty="n") |
|
127 |
dev.off() |
|
128 |
|
|
129 |
## Figure 2: Daily_tmax_monthly_TMax_scatterplot |
|
130 |
|
|
131 |
png(paste("Daily_tmax_monthly_TMax_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
132 |
out_prefix,".png", sep="")) |
|
133 |
plot(dailyTmax~TMax,data=data_s,xlab="Mo Tmax",ylab=paste("Daily for",datelabel),main="across stations in VE") |
|
134 |
nb_point<-paste("ns=",length(data_s$TMax),sep="") |
|
135 |
nb_point2<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
136 |
nb_point3<-paste("n_month=",length(data_month$TMax),sep="") |
|
137 |
#Add the number of data points on the plot |
|
138 |
legend("topleft",legend=c(nb_point,nb_point2,nb_point3),bty="n",cex=0.8) |
|
139 |
dev.off() |
|
140 |
|
|
141 |
## Figure 3: Predicted_tmax_versus_observed_scatterplot |
|
142 |
|
|
143 |
#This is for mod_kr!! add other models later... |
|
144 |
png(paste("Predicted_tmax_versus_observed_scatterplot_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
145 |
out_prefix,".png", sep="")) |
|
146 |
plot(data_s$mod_kr~data_s[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
147 |
#plot(data_v$mod_kr~data_v[[y_var_name]],xlab=paste("Actual daily for",datelabel),ylab="Pred daily") |
|
148 |
abline(0,1) |
|
149 |
title(paste("Predicted_tmax_versus_observed_scatterplot for",datelabel,sep=" ")) |
|
150 |
nb_point1<-paste("ns_obs=",length(data_s$TMax)-sum(is.na(data_s[[y_var_name]])),sep="") |
|
151 |
rmse_str1<-paste("RMSE= ",format(rmse,digits=3),sep="") |
|
152 |
rmse_str2<-paste("RMSE_f= ",format(rmse_f,digits=3),sep="") |
|
153 |
|
|
154 |
#Add the number of data points on the plot |
|
155 |
legend("topleft",legend=c(nb_point1,rmse_str1,rmse_str2),bty="n",cex=0.8) |
|
156 |
dev.off() |
|
157 |
|
|
158 |
## Figure 4: delta surface and bias |
|
159 |
|
|
160 |
#Plot bias,delta and prediction? |
|
161 |
|
|
162 |
#To do |
|
163 |
#Delta surface |
|
164 |
#png(paste("Delta_surface_LST_TMax_",sampling_dat$date[i],"_",sampling_dat$prop[i], |
|
165 |
# "_",sampling_dat$run_samp[i],out_prefix,".png", sep="")) |
|
166 |
#surface(fitdelta,col=rev(terrain.colors(100)),asp=1,main=paste("Interpolated delta for",datelabel,sep=" ")) |
|
167 |
#dev.off() |
|
168 |
# |
|
169 |
#bias_d_rast<-raster("fusion_bias_LST_20100103_30_1_10d_GAM_fus5_all_lstd_02082013.rst") |
|
170 |
#plot(bias_d_rast) |
|
171 |
|
|
172 |
## Figure 5: prediction raster images |
|
173 |
png(paste("Raster_prediction_",sampling_dat$date,"_",sampling_dat$prop,"_",sampling_dat$run_samp, |
|
174 |
out_prefix,".png", sep="")) |
|
175 |
#paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
176 |
names(rast_pred_temp)<-paste(metrics_v$pred_mod,format(metrics_v$rmse,digits=3),sep=":") |
|
177 |
plot(rast_pred_temp) |
|
178 |
dev.off() |
|
179 |
|
|
180 |
## Figure 6: training and testing stations used |
|
181 |
|
|
182 |
plot(raster(rast_pred_temp,layer=5)) |
|
183 |
plot(data_s,col="black",cex=1.2,pch=4,add=TRUE) |
|
184 |
plot(data_v,col="red",cex=1.2,pch=2,add=TRUE) |
|
185 |
|
|
186 |
## Figure 7: monthly stations used |
|
187 |
|
|
188 |
plot(raster(rast_pred_temp,layer=5)) |
|
189 |
plot(data_month,col="black",cex=1.2,pch=4,add=TRUE) |
|
190 |
title("Monthly ghcn station in Venezuela for January") |
|
191 |
|
|
192 |
## Summarize information for the day: |
|
193 |
|
|
194 |
# ################ |
|
195 |
# #PART 2: Region Covariate analyses ### |
|
196 |
# ################ |
|
197 |
# |
|
198 |
# # This should be in a separate script to analyze covariates from region. |
|
199 |
# |
|
200 |
# #MAP1:Study area with LC mask and tiles/polygon outline |
|
201 |
# |
|
202 |
# |
|
203 |
# #MAP 2: plotting land cover in the study region: |
|
204 |
# |
|
205 |
# l1<-"LC1,Evergreen/deciduous needleleaf trees" |
|
206 |
# l2<-"LC2,Evergreen broadleaf trees" |
|
207 |
# l3<-"LC3,Deciduous broadleaf trees" |
|
208 |
# l4<-"LC4,Mixed/other trees" |
|
209 |
# l5<-"LC5,Shrubs" |
|
210 |
# l6<-"LC6,Herbaceous vegetation" |
|
211 |
# l7<-"LC7,Cultivated and managed vegetation" |
|
212 |
# l8<-"LC8,Regularly flooded shrub/herbaceous vegetation" |
|
213 |
# l9<-"LC9,Urban/built-up" |
|
214 |
# l10<-"LC10,Snow/ice" |
|
215 |
# l11<-"LC11,Barren lands/sparse vegetation" |
|
216 |
# l12<-"LC12,Open water" |
|
217 |
# lc_names_str<-c(l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12) |
|
218 |
# |
|
219 |
# names(lc_reg_s)<-lc_names_str |
|
220 |
# |
|
221 |
# png(paste("LST_TMax_scatterplot_",sampling_dat$date[i],"_",sampling_dat$prop[i],"_",sampling_dat$run_samp[i], out_prefix,".png", sep="")) |
|
222 |
# plot(modst$TMax,sta_tmax_from_lst,xlab="Station mo Tmax",ylab="LST mo Tmax",main=paste("LST vs TMax for",datelabel,sep=" ")) |
|
223 |
# abline(0,1) |
|
224 |
# nb_point<-paste("n=",length(modst$TMax),sep="") |
|
225 |
# mean_bias<-paste("LST bigrasas= ",format(mean(modst$LSTD_bias,na.rm=TRUE),digits=3),sep="") |
|
226 |
# #Add the number of data points on the plot |
|
227 |
# legend("topleft",legend=c(mean_bias,nb_point),bty="n") |
|
228 |
# dev.off() |
|
229 |
# |
|
230 |
# #Map 3: Elevation and LST in January |
|
231 |
# tmp_s<-stack(LST,elev_1) |
|
232 |
# png(paste("LST_elev_",sampling_dat$date[i],"_",sampling_dat$prop[i],"_",sampling_dat$run_samp[i], out_prefix,".png", sep="")) |
|
233 |
# plot(tmp_s) |
|
234 |
# |
|
235 |
# #Map 4: LST climatology per month |
|
236 |
# |
|
237 |
# names_tmp<-c("mm_01","mm_02","mm_03","mm_04","mm_05","mm_06","mm_07","mm_08","mm_09","mm_10","mm_11","mm_12") |
|
238 |
# LST_s<-subset(s_raster,names_tmp) |
|
239 |
# names_tmp<-c("nobs_01","nobs_02","nobs_03","nobs_04","nobs_05","nobs_06","nobs_07","nobs_08", |
|
240 |
# "nobs_09","nobs_10","nobs_11","nobs_12") |
|
241 |
# LST_nobs<-subset(s_raster,names_tmp) |
|
242 |
# |
|
243 |
# LST_nobs<-mask(LST_nobs,LC_mask,filename="test2.tif") |
|
244 |
# LST_s<-mask(LST_s,LC_mask,filename="test3.tif") |
|
245 |
# c("Jan","Feb") |
|
246 |
# plot(LST_s) |
|
247 |
# plot(LST_nobs) |
|
248 |
# |
|
249 |
# #Map 5: LST and TMax |
|
250 |
# |
|
251 |
# #note differnces in patternin agricultural areas and |
|
252 |
# min_values<-cellStats(LST_s,"min") |
|
253 |
# max_values<-cellStats(LST_s,"max") |
|
254 |
# mean_values<-cellStats(LST_s,"mean") |
|
255 |
# sd_values<-cellStats(LST_s,"sd") |
|
256 |
# #median_values<-cellStats(molst,"median") Does not extist |
|
257 |
# statistics_LST_s<-cbind(min_values,max_values,mean_values,sd_values) #This shows that some values are extremes...especially in October |
|
258 |
# LST_stat_data<-as.data.frame(statistics_LST_s) |
|
259 |
# names(LST_stat_data)<-c("min","max","mean","sd") |
|
260 |
# # Statistics for number of valid observation stack |
|
261 |
# min_values<-cellStats(nobslst,"min") |
|
262 |
# max_values<-cellStats(nobslst,"max") |
|
263 |
# mean_values<-cellStats(nobslst,"mean") |
|
264 |
# sd_values<-cellStats(nobslst,"sd") |
|
265 |
# statistics_LSTnobs_s<-cbind(min_values,max_values,mean_values,sd_values) #This shows that some values are extremes...especially in October |
|
266 |
# LSTnobs_stat_data<-as.data.frame(statistics_LSTnobs_s) |
|
267 |
# |
|
268 |
# X11(width=12,height=12) |
|
269 |
# #Plot statiscs (mean,min,max) for monthly LST images |
|
270 |
# plot(1:12,LST_stat_data$mean,type="b",ylim=c(-15,60),col="black",xlab="month",ylab="tmax (degree C)") |
|
271 |
# lines(1:12,LST_stat_data$min,type="b",col="blue") |
|
272 |
# lines(1:12,LST_stat_data$max,type="b",col="red") |
|
273 |
# text(1:12,LST_stat_data$mean,rownames(LST_stat_data),cex=1,pos=2) |
|
274 |
# |
|
275 |
# legend("topleft",legend=c("min","mean","max"), cex=1.5, col=c("blue","black","red"), |
|
276 |
# lty=1) |
|
277 |
# title(paste("LST statistics for Oregon", "2010",sep=" ")) |
|
278 |
# savePlot("lst_statistics_OR.png",type="png") |
|
279 |
# |
|
280 |
# #Plot number of valid observations for LST |
|
281 |
# plot(1:12,LSTnobs_stat_data$mean,type="b",ylim=c(0,280),col="black",xlab="month",ylab="tmax (degree C)") |
|
282 |
# lines(1:12,LSTnobs_stat_data$min,type="b",col="blue") |
|
283 |
# lines(1:12,LSTnobs_stat_data$max,type="b",col="red") |
|
284 |
# text(1:12,LSTnobs_stat_data$mean,rownames(LSTnobs_stat_data),cex=1,pos=2) |
|
285 |
# |
|
286 |
# legend("topleft",legend=c("min","mean","max"), cex=1.5, col=c("blue","black","red"), |
|
287 |
# lty=1) |
|
288 |
# title(paste("LST number of valid observations for Oregon", "2010",sep=" ")) |
|
289 |
# savePlot("lst_nobs_OR.png",type="png") |
|
290 |
# |
|
291 |
# plot(data_month$TMax,add=TRUE) |
|
292 |
# |
|
293 |
# ### Map 6: station in the region |
|
294 |
# |
|
295 |
# plot(tmax_predicted) |
|
296 |
# plot(data_s,col="black",cex=1.2,pch=4,add=TRUE) |
|
297 |
# plot(data_v,col="blue",cex=1.2,pch=2,add=TRUE) |
|
298 |
# |
|
299 |
# plot(tmax_predicted) |
|
300 |
# plot(data_month,col="black",cex=1.2,pch=4,add=TRUE) |
|
301 |
# title("Monthly ghcn station in Venezuela for 2000-2010") |
|
302 |
# |
|
303 |
|
|
304 |
#### End of script #### |
Also available in: Unified diff
GAM fusion Venezuela, output analyses to create quickly maps and plots for each date