Project

General

Profile

Download (32.6 KB) Statistics
| Branch: | Revision:
1
#####################################  METHODS COMPARISON part 4 ##########################################
2
#################################### Spatial Analysis ############################################
3
#This script utilizes the R ojbects created during the interpolation phase.                       #
4
#At this stage the script produces figures of various accuracy metrics and compare methods:       #
5
#- rank station in terms of residuals and metrics (MAE and RMSE)                                  #
6
#- calculate accuary metrics for climtology predictions...                                        #
7
#- spatial density of station network and accuracy metric                                         #
8
#- visualization of maps of prediction and difference for comparison                              #
9
#AUTHOR: Benoit Parmentier                                                                        #
10
#DATE: 11/23/2012                                                                                 #
11
#PROJECT: NCEAS INPLANT: Environment and Organisms --TASK#491 --                                  #
12
###################################################################################################
13

    
14
###Loading R library and packages                                                      
15
library(gtools)                                        # loading some useful tools such as mixedsort
16
library(mgcv)                                           # GAM package by Wood 2006 (version 2012)
17
library(sp)                                             # Spatial pacakge with class definition by Bivand et al. 2008
18
library(spdep)                                          # Spatial package with methods and spatial stat. by Bivand et al. 2012
19
library(rgdal)                                          # GDAL wrapper for R, spatial utilities (Keitt et al. 2012)
20
library(gstat)                                          # Kriging and co-kriging by Pebesma et al. 2004
21
library(automap)                                        # Automated Kriging based on gstat module by Hiemstra et al. 2008
22
library(spgwr)
23
library(gpclib)
24
library(maptools)
25
library(graphics)
26
library(parallel)                            # Urbanek S. and Ripley B., package for multi cores & parralel processing
27
library(raster)
28
library(rasterVis)
29
library(plotrix)   #Draw circle on graph
30
library(reshape)
31
## Functions
32
#loading R objects that might have similar names
33
load_obj <- function(f)
34
{
35
  env <- new.env()
36
  nm <- load(f, env)[1]
37
  env[[nm]]
38
}
39

    
40
###Parameters and arguments
41

    
42
infile1<- "ghcn_or_tmax_covariates_06262012_OR83M.shp"    #GHCN shapefile containing variables for modeling 2010                 
43
#infile2<-"list_10_dates_04212012.txt"                    #List of 10 dates for the regression
44
infile2<-"list_365_dates_04212012.txt"                    #list of dates
45
infile3<-"LST_dates_var_names.txt"                        #LST dates name
46
infile4<-"models_interpolation_05142012.txt"              #Interpolation model names
47
infile5<-"mean_day244_rescaled.rst"                       #mean LST for day 244
48
inlistf<-"list_files_05032012.txt"                        #list of raster images containing the Covariates
49
infile6<-"OR83M_state_outline.shp"
50
#stat_loc<-read.table(paste(path,"/","location_study_area_OR_0602012.txt",sep=""),sep=",", header=TRUE)
51

    
52
out_prefix<-"methods_11092012_"
53

    
54
##### LOAD USEFUL DATA
55

    
56
#obj_list<-"list_obj_08262012.txt"                                  #Results of fusion from the run on ATLAS
57
path<-"/home/parmentier/Data/IPLANT_project/methods_interpolation_comparison_10242012" #Jupiter LOCATION on Atlas for kriging                              #Jupiter Location on XANDERS
58
#path<-"/Users/benoitparmentier/Dropbox/Data/NCEAS/Oregon_covariates/"            #Local dropbox folder on Benoit's laptop
59
setwd(path) 
60
proj_str="+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_0=-120.5 +x_0=400000 +y_0=0 +ellps=GRS80 +units=m +no_defs";
61
#User defined output prefix
62

    
63
#CRS<-proj4string(ghcn)                       #Storing projection information (ellipsoid, datum,etc.)
64
lines<-read.table(paste(path,"/",inlistf,sep=""), sep="")                      #Column 1 contains the names of raster files
65
inlistvar<-lines[,1]
66
inlistvar<-paste(path,"/",as.character(inlistvar),sep="")
67
covar_names<-as.character(lines[,2])                                         #Column two contains short names for covaraites
68

    
69
s_raster<- stack(inlistvar)                                                  #Creating a stack of raster images from the list of variables.
70
layerNames(s_raster)<-covar_names                                            #Assigning names to the raster layers
71
projection(s_raster)<-proj_str
72

    
73
#Create mask using land cover data
74
pos<-match("LC10",layerNames(s_raster))            #Find the layer which contains water bodies
75
LC10<-subset(s_raster,pos)
76
LC10[is.na(LC10)]<-0                               #Since NA values are 0, we assign all zero to NA
77
mask_land<-LC10<100                                #All values below 100% water are assigned the value 1, value 0 is "water"
78
mask_land_NA<-mask_land                            
79
mask_land_NA[mask_land_NA==0]<-NA                  #Water bodies are assigned value 1
80

    
81
data_name<-"mask_land_OR"
82
raster_name<-paste(data_name,".rst", sep="")
83
writeRaster(mask_land, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
84
#writeRaster(r2, filename=raster_name,overwrite=TRUE)  #Writing the data in a raster file format...(IDRISI)
85

    
86
pos<-match("ELEV_SRTM",layerNames(s_raster)) #Find column with name "ELEV_SRTM"
87
ELEV_SRTM<-raster(s_raster,layer=pos)             #Select layer from stack on 10/30
88
s_raster<-dropLayer(s_raster,pos)
89
ELEV_SRTM[ELEV_SRTM <0]<-NA
90
mask_ELEV_SRTM<-ELEV_SRTM>0
91

    
92
#Change this a in loop...
93
pos<-match("LC1",layerNames(s_raster)) #Find column with name "value"
94
LC1<-raster(s_raster,layer=pos)             #Select layer from stack
95
s_raster<-dropLayer(s_raster,pos)
96
LC1[is.na(LC1)]<-0
97
pos<-match("LC2",layerNames(s_raster)) #Find column with name "value"
98
LC2<-raster(s_raster,layer=pos)             #Select layer from stack
99
s_raster<-dropLayer(s_raster,pos)
100
LC2[is.na(LC2)]<-0
101
pos<-match("LC3",layerNames(s_raster)) #Find column with name "value"
102
LC3<-raster(s_raster,layer=pos)             #Select layer from stack
103
s_raster<-dropLayer(s_raster,pos)
104
LC3[is.na(LC3)]<-0
105
pos<-match("LC4",layerNames(s_raster)) #Find column with name "value"
106
LC4<-raster(s_raster,layer=pos)             #Select layer from stack
107
s_raster<-dropLayer(s_raster,pos)
108
LC4[is.na(LC4)]<-0
109
pos<-match("LC6",layerNames(s_raster)) #Find column with name "value"
110
LC6<-raster(s_raster,layer=pos)             #Select layer from stack
111
s_raster<-dropLayer(s_raster,pos)
112
LC6[is.na(LC6)]<-0
113
pos<-match("LC7",layerNames(s_raster)) #Find column with name "value"
114
LC7<-raster(s_raster,layer=pos)             #Select layer from stack
115
s_raster<-dropLayer(s_raster,pos)
116
LC7[is.na(LC7)]<-0
117
pos<-match("LC9",layerNames(s_raster)) #Find column with name "LC9", this is wetland...
118
LC9<-raster(s_raster,layer=pos)             #Select layer from stack
119
s_raster<-dropLayer(s_raster,pos)
120
LC9[is.na(LC9)]<-0
121

    
122
LC_s<-stack(LC1,LC2,LC3,LC4,LC6,LC7)
123
layerNames(LC_s)<-c("LC1_forest","LC2_shrub","LC3_grass","LC4_crop","LC6_urban","LC7_barren")
124
LC_s <-mask(LC_s,mask_ELEV_SRTM)
125
plot(LC_s)
126

    
127
s_raster<-addLayer(s_raster, LC_s)
128

    
129
#mention this is the last... files
130

    
131
#Read region outline...
132
filename<-sub(".shp","",infile6)             #Removing the extension from file.
133
reg_outline<-readOGR(".", filename)                 #reading shapefile 
134

    
135
############ PART 4: RESIDUALS ANALYSIS: ranking, plots, focus regions  ##################
136
############## EXAMINING STATION RESIDUALS ###########
137
########### CONSTANT OVER 365 AND SAMPLING OVER 365
138
#Plot daily_deltaclim_rast, bias_rast,add data_s and data_v
139

    
140
# RANK STATION by average or median RMSE
141
# Count the number of times a station is in the extremum group of outliers...
142
# LOOK at specific date...
143

    
144
#Examine residuals for a spciefic date...Jan, 1 using run of const_all i.e. same training over 365 dates
145
path_data_cai<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_CAI"  #Change to constant
146
path_data_fus<-"/home/parmentier/Data/IPLANT_project/data_Oregon_stations_10242012_GAM"
147

    
148
date_selected<-"20100103"
149

    
150
oldpath<-getwd()
151
setwd(path_data_cai)
152
file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_CAI2_const_all_10312012.rst",sep="")) #Search for files in relation to fusion                  
153
lf_cai2c<-list.files(pattern=file_pat) #Search for files in relation to fusion                  
154
rast_cai2c<-stack(lf_cai2c)                   #lf_cai2c CAI results with constant sampling over 365 dates
155
rast_cai2c<-mask(rast_cai2c,mask_ELEV_SRTM)
156

    
157
oldpath<-getwd()
158
setwd(path_data_fus)
159
file_pat<-glob2rx(paste("*tmax_predicted*",date_selected,"*_365d_GAM_fusion_const_all_lstd_11022012.rst",sep="")) #Search for files in relation to fusion                  
160
lf_fus1c<-list.files(pattern=file_pat) #Search for files in relation to fusion                        
161
rast_fus1c<-stack(lf_fus1c)
162
rast_fus1c<-mask(rast_fus1c,mask_ELEV_SRTM)
163

    
164
rast_fus_pred<-raster(rast_fus1c,1)  # Select the first model from the stack i.e fusion with kriging for both steps
165
rast_cai_pred<-raster(rast_cai2c,1)                  
166

    
167
#list files that contain model objects and ratingin-testing information for CAI and Fusion
168

    
169
gam_fus<-load_obj(file.path(path_data_fus,
170
                            "results_mod_obj__365d_GAM_fusion_const_all_lstd_11022012.RData"))
171
gam_cai<-load_obj(file.path(path_data_cai,
172
                            "results_mod_obj__365d_GAM_CAI2_const_all_10312012.RData"))  #This contains all the info
173
sampling_date_list<-gam_fus$sampling_obj$sampling_dat$date
174

    
175
#Create a residual table...
176
res_mod9f_list<-vector("list",365)
177
res_mod9c_list<-vector("list",365)
178
data_vf_list<-vector("list",365)
179
data_vc_list<-vector("list",365)
180

    
181
for(k in 1:365){
182
  data_vf<-as.data.frame(c)
183
  data_vc<-as.data.frame(gam_cai$gam_CAI_mod[[k]]$data_v)
184
  data_vf<-data_vf[,c("id","date","res_mod7","x_OR83M", "y_OR83M")]
185
  data_vc<-data_vc[,c("id","date","res_mod9","x_OR83M", "y_OR83M")]
186
  #subset data frame? or rbind them...and reshape?? think about it
187
  data_vf_list[[k]]<-data_vf
188
  data_vc_list[[k]]<-data_vc
189
}
190
tab_resmod9f<-do.call(rbind,data_vf_list)
191
tab_resmod9c<-do.call(rbind,data_vc_list)
192

    
193
#Get the unique location information...
194
tab_locsc<-melt(tab_resmod9c,
195
               measure=c("x_OR83M","y_OR83M"),
196
               id=c("id"),
197
               na.rm=F)
198
tab_locsc_cast<-cast(tab_locsc,id~variable,mean)
199
tab_locsc<-as.data.frame(tab_locsc_cast)
200
coords<- tab_locsc[,c('x_OR83M','y_OR83M')]
201
coordinates(tab_locsc)<-coords
202
proj4string(tab_locsc)<-proj_str  #Need to assign coordinates...
203

    
204
tab_locsf<-melt(tab_resmod9f,
205
                measure=c("x_OR83M","y_OR83M"),
206
                id=c("id"),
207
                na.rm=F)
208
tab_locsf_cast<-cast(tab_locsf,id~variable,mean)
209
tab_locsf<-as.data.frame(tab_locsf_cast)
210
coords<- tab_locsf[,c('x_OR83M','y_OR83M')]
211
coordinates(tab_locsf)<-coords
212
proj4string(tab_locsf)<-proj_str  #Need to assign coordinates..
213

    
214
all.equal(tab_locsc,tab_locsf) #Checking that stations used over the year are equal!!!
215
#since all equal we can use one object, it will be sufficient...
216
tab_locs<-tab_locsf
217

    
218
####### Now join and summarize objects together...
219

    
220
tabf_melt<-melt(tab_resmod9f[c("id","date","res_mod7")],
221
               measure=c("res_mod7"), 
222
               id=c("id","date"),
223
               na.rm=F)
224
tabc_melt<-melt(tab_resmod9c[c("id","date","res_mod9")],
225
               measure=c("res_mod9"), 
226
               id=c("id","date"),
227
               na.rm=F)
228
tabf_cast<-cast(tabf_melt,id~date~variable,mean)
229
tabf_resmod9_locs<-as.data.frame(tabf_cast[,,1])
230
tabc_cast<-cast(tabc_melt,id~date~variable,mean)
231
tabc_resmod9_locs<-as.data.frame(tabc_cast[,,1])
232

    
233

    
234
#Now reclass the data into outliers: Class with -1 (negative exteme),class 0 (not extreme), class 1 (positive extre)
235
calculate_extremes_stat <-function (tab_resmod9_locs,tab_locs){
236
  
237
  #tab_resmod9_locs<-tabf_resmod9_locs #comment out when running function
238
  #tab_locs<-tab_locsf
239
  #tab_res_rec<-tabf_resmod9_locs
240
  
241
  #start here
242
  sd_v<-sapply(tab_resmod9_locs,sd,na.rm=T) #This the sandard deviation of residuals for every day for the fusion prediction
243
  mean_v<-sapply(tab_resmod9_locs,mean,na.rm=T)  #This the mean of residuals for every day for the fusion prediction
244
  
245
  for (k in 1:365){
246
    mean_val<-mean_v[k]
247
    sd_val<-sd_v[k]
248
    y<-tab_resmod9_locs[,k]
249
    breaks<-c("-inf",mean_val-2*sd_val,mean_val+2*sd_val,"+inf")
250
    rec<-cut(y,breaks,labels=c(-1,0,1))
251
    rec<-as.numeric(as.character(rec))
252
    tab_res_rec[,k]<-rec
253
  }
254
  
255
  tab_res_rec<-tab_res_rec[,1:365]                  #mae_fun<-function (x){mean(abs(x),na.rm=T)}                                    
256
  
257
  tab_res_rec$id<-as.character(rownames(tab_res_rec))
258
  #mae_fun<-function (x){mean(abs(x),na.rm=T)}                                    
259
  for (i in 1:nrow(tab_resmod9_locs)){
260
    x<-tab_resmod9_locs[i,]
261
    tab_locs$mae[i]<-mean(abs(x),na.rm=T)
262
    #tab_locs$mae2[i]<-mae_fun(x)
263
    rec<-as.numeric(tab_res_rec[i,])
264
    tmp<-table(rec)
265
    tab_res_rec$c1[i]<-as.numeric(tmp[1])
266
    tab_res_rec$c2[i]<-as.numeric(tmp[2])
267
    tab_res_rec$c3[i]<-as.numeric(tmp[3])  
268
  }
269
  
270
  projstr_info<-proj4string(tab_locs)
271
  tab_resmod9_locs$id<-rownames(tab_resmod9_locs)
272
  tab_resmod9_locs[is.na(tab_resmod9_locs)]<-NA  #replace NaN by NA
273
  tab_locs$id<-as.character(tab_locs$id)
274
  data_v_res<-merge(tab_locs,tab_resmod9_locs,by="id")
275
  data_v_res<-merge(tab_res_rec[,c("id","c1","c2","c3")],data_v_res,by="id")
276

    
277
  coords<- data_v_res[,c('x_OR83M','y_OR83M')]
278
  coordinates(data_v_res)<-coords
279
  proj4string(data_v_res)<-projstr_info  #Need to assign coordinates...
280
  
281
  #tmp<-subset(data_v_res,select=date_selected)
282
  data_v_res$idx<-1:length(data_v_res)
283
  #Plotting results...
284
  return (data_v_res)
285
}
286

    
287
### usef the function...
288
data_v_resf<-calculate_extremes_stat(tabf_resmod9_locs,tab_locs) # call function
289
data_v_resc<-calculate_extremes_stat(tabc_resmod9_locs,tab_locs) # call functio
290

    
291
#Some plotting of results...
292
data_v_plot<-subset(data_v_resf,!is.na(data_v_resf$mae),"mae")      
293
bubble(data_v_plot,"mae",add=TRUE)
294
spplot(data_v_resf,"mae")
295

    
296
data_v_plot<-subset(data_v_res,!is.na(c1),"c1")
297
bubble(data_v_res,"c1")
298
plot(data_v_res[5,])
299
plot(reg_outline,add=TRUE)
300
#Figure on 11/07
301
s.range <- c(min(minValue(rast_fus_pred)), max(maxValue(rast_fus_pred)))
302
col.breaks <- pretty(s.range, n=50)
303
lab.breaks <- pretty(s.range, n=5)
304
temp.colors <- colorRampPalette(c('blue', 'white', 'red'))
305

    
306
#Training plot
307
plot(rast_fus_pred, breaks=col.breaks, col=temp.colors(length(col.breaks)-1),
308
     axis=list(at=lab.breaks, labels=lab.breaks))
309
plot(reg_outline,add=TRUE)
310

    
311
plot(data_v_res, pch=1,cex=sqrt(data_v_res$c1)/5,add=TRUE)
312

    
313
plot(data_v_plot, pch=1,cex=sqrt(data_v_plot$mae),add=TRUE)
314
# Calculate RMSE and MAE for each station over 365 dates and plot it on a map as well as on a scatterplot
315
#Look at the number of observation.
316

    
317
#bubble(data_v_res,"X20101230",na.rm=T,do.sqrt=TRUE)
318

    
319
#1) Digitize features from high resolution imagery and see if you can see differences in the way it is detected in CAI and fusion method...
320
#in particular how much variation there is in such polygons...
321
#Polygon to digitize: valley, crop area, mountain...Show that CAI does not capture crop as well as Fusion
322
#2) Transect with slope changes and examining variation in temperatures...: calculate average MAE on the transect for examle river
323
#3) X Land cover: examine MAE per land cover...for CAI and Fusion, LST bias and ecoregions...: boxplots at 
324
#4) Look at differences...regions with box plot of MAE inside and outside regions of differences...
325
#5) X Summarize by season/month
326
#6) PCA on differences and CAI-Fusion
327
#7) X PCA on residuals...
328
#8) X Plot residuals at station by buble plot and kriging...
329
#9) PCA MAE and other variables ...                  
330

    
331
### PLOTS OF RESIDUALS AND COVARIATES FOR SPECIFIC DATE
332

    
333
#This should be in a loop...
334
setwd(path)
335
date_selected<-"20100103"
336
dates<-c("20100103","20100901")
337

    
338
for (i in 1:length(dates)){
339
  date_selected<-dates[i]
340
  k<-match(date_selected,sampling_date_list)
341
  names(gam_fus$gam_fus_mod[[k]])               #Show the name structure of the object/list
342
  
343
  #Extract the training and testing information for the given date...
344
  data_sf<-gam_fus$gam_fus_mod[[k]]$data_s #object for the first date...20100103                  
345
  data_vf<-gam_fus$gam_fus_mod[[k]]$data_v #object for the first date...20100103                  
346
  data_sc<-gam_cai$gam_CAI_mod[[k]]$data_s #object for the first date...20100103                  
347
  data_vc<-gam_cai$gam_CAI_mod[[k]]$data_v #object for the first date...20100103                  
348
  
349
  #Join information extracted using the function previously
350
  id_selected<-intersect(data_v_resf$id,data_vf$id) #Match station using their official IDSs
351
  pos<-match(id_selected,data_v_resf$id)
352
  tmp<-as.data.frame(data_v_resf[pos,c("id","idx","mae","c1","c2","c3")])
353
  tmp<-tmp[,c("id","idx","mae","c1","c2","c3")]
354
  data_vf<-merge(data_vf,tmp,by="id")
355
  id_selected<-intersect(data_v_resc$id,data_vc$id) #Match station using their official IDSs
356
  pos<-match(id_selected,data_v_resc$id)
357
  tmp<-as.data.frame(data_v_resc[pos,c("id","idx","mae","c1","c2","c3")])
358
  tmp<-tmp[,c("id","idx","mae","c1","c2","c3")]
359
  data_vc<-merge(data_vc,tmp,by="id")
360
  #Turn the data frame back into a spdf
361
  coords<- data_vf[,c('x_OR83M','y_OR83M')]
362
  coordinates(data_vf)<-coords
363
  proj4string(data_vf)<-proj_str  #Need to assign coordinates...
364
  coords<- data_vc[,c('x_OR83M','y_OR83M')]
365
  coordinates(data_vc)<-coords
366
  proj4string(data_vc)<-proj_str  #Need to assign coordinates...
367
  
368
  #Prepare for plotting
369
  X11(width=16,height=9)
370
  par(mfrow=c(1,2))
371
  
372
  #Select background image for plotting and Plot validation residuals for fusion on 20100103
373
  s.range <- c(min(minValue(rast_fus_pred)), max(maxValue(rast_fus_pred)))
374
  col.breaks <- pretty(s.range, n=50)
375
  lab.breaks <- pretty(s.range, n=5)
376
  temp.colors <- colorRampPalette(c('blue', 'white', 'red'))
377
  
378
  #Training plot
379
  plot(rast_fus_pred, breaks=col.breaks, col=temp.colors(length(col.breaks)-1),
380
       axis=list(at=lab.breaks, labels=lab.breaks))
381
  plot(data_sf,cex=1, add=TRUE)
382
  plot(reg_outline,add=TRUE)
383
  title(paste("Training stations",date_selected,sep=" "))
384
  #Testing plot
385
  plot(rast_fus_pred, breaks=col.breaks, col=temp.colors(length(col.breaks)-1),
386
       axis=list(at=lab.breaks, labels=lab.breaks))
387
  plot(data_vf,cex=1,pch=1,add=TRUE)
388
  plot(reg_outline,add=TRUE)
389
  text(data_vf,labels=data_vf$idx,pos=3,cex=1.3)
390
  title(paste("Testing stations",date_selected,sep=" "))
391
  
392
  #savePlot here...
393
  savePlot(paste("fig1_training_testing_",date_selected,out_prefix,".png", sep=""), type="png")
394
  
395
  #plot(rast_fus_pred, breaks=col.breaks, col=temp.colors(length(col.breaks)-1),
396
  #     axis=list(at=lab.breakts, labels=lab.breaks))
397
  #plot(data_vf,cex=sqrt(data_vf$res_mod7),pch=1,add=TRUE)
398
  #plot(reg_outline,add=TRUE)
399
  #text(data_vf,labels=data_vf$idx,pos=3)
400
  
401
  #X11(width=16,height=9)
402
  #par(mfrow=c(1,2))
403
  
404
  # CREATE A FUNCTION TO AUTOMATE THE PLOT: improve code here
405
  #Plot residuals
406
  y_range<-range(c(data_vf$res_mod7,data_vc$res_mod9))
407
  plot(data_vf$idx,data_vf$res_mod7, ylab="Residuals", xlab="Index", ylim=y_range)
408
  text(data_vf$idx,data_vf$res_mod7,labels=data_vf$idx,pos=3)
409
  grid(lwd=0.5,col="black")
410
  title(paste("Testing stations residuals fusion",date_selected,sep=" "))
411
  plot(data_vc$idx,data_vc$res_mod9,ylab="Residuals", xlab="Index", ylim=y_range)
412
  text(data_vc$idx,data_vc$res_mod9,data_vc$idx,labels=data_vc$idx,pos=3)
413
  grid(lwd=0.5, col="black")
414
  title(paste("Testing stations residuals CAI",date_selected,sep=" "))
415
  #savePlot here...
416
  savePlot(paste("fig2_testing_residuals_fusion_CAI_",date_selected,out_prefix,".png", sep=""), type="png")
417
  
418
  #Plot predicted vs observed
419
  y_range<-range(c(data_vf$pred_mod7,data_vc$pred_mod9))
420
  x_range<-range(c(data_vf$dailyTmax,data_vc$dailyTamx))
421
  plot(data_vf$pred_mod7,data_vf$dailyTmax, ylab="Observed daily tmax (C)", xlab="Predicted daily tmax (C)", 
422
       ylim=y_range,xlim=x_range)
423
  text(data_vf$pred_mod7,data_vf$dailyTmax,labels=data_vf$idx,pos=3)
424
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
425
  grid(lwd=0.5,col="black")
426
  title(paste("Testing stations tmax fusion vs daily tmax",date_selected,sep=" "))
427
  plot(data_vc$pred_mod9,data_vc$dailyTmax,ylab="Observed daily tmax (C)", xlab="Predicted daily tmax (C)", 
428
       ylim=y_range,xlim=x_range)
429
  text(data_vc$pred_mod9,data_vc$dailyTmax,labels=data_vc$idx,pos=3)
430
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
431
  grid(lwd=0.5, col="black")
432
  title(paste("Testing stations tmax CAI vs daily tmax",date_selected,sep=" "))
433
  #savePlot here...
434
  savePlot(paste("fig3_testing_predicted_observed_fusion_CAI_",date_selected,out_prefix,".png", sep=""), type="png")
435
 
436
  ###########Plot residuals and covariates
437
  ##Elevation and residulas
438
  y_range<-range(c(data_vf$res_mod7,data_vc$res_mod9))
439
  x_range<-range(c(data_vf$ELEV_SRTM,data_vc$ELEV_SRTM))
440
  plot(data_vf$ELEV_SRTM,data_vf$res_mod7, ylab="Residuals", xlab="ELEV_SRTM (m) ", 
441
       ylim=y_range, xlim=x_range)
442
  text(data_vf$ELEV_SRTM,data_vf$res_mod7,labels=data_vf$idx,pos=3)
443
  grid(lwd=0.5,col="black")
444
  title(paste("Testing stations residuals fusion vs Elevation",date_selected,sep=" "))
445
  plot(data_vc$ELEV_SRTM,data_vc$res_mod9, ylab="Residuals", xlab="ELEV_SRTM (m) ", 
446
       ylim=y_range, xlim=x_range)
447
  text(data_vc$ELEV_SRTM,data_vc$res_mod9,labels=data_vc$idx,pos=3)
448
  grid(lwd=0.5,col="black")
449
  title(paste("Testing stations residuals CAI vs Elevation",date_selected,sep=" "))
450
  savePlot(paste("fig4_testing_residuals_fusion_CAI_Elev_",date_selected,out_prefix,".png", sep=""), type="png")
451
  
452
  ##Forest (LC1) and residuals
453
  y_range<-range(c(data_vf$res_mod7,data_vc$res_mod9))
454
  x_range<-range(c(data_vf$LC1,data_vc$LC1))
455
  plot(data_vf$LC1,data_vf$res_mod7,ylab="Residuals", xlab="LC1 (%)", 
456
       ylim=y_range, xlim=x_range)
457
  text(data_vf$LC1,data_vf$res_mod7,labels=data_vf$idx,pos=3)
458
  grid(lwd=0.5,col="black")
459
  title(paste("Testing stations residuals CAI vs LC1 (forest)",date_selected,sep=" "))
460
  plot(data_vc$LC1,data_vc$res_mod9,ylab="Residuals", xlab="LC1 (%)", 
461
       ylim=y_range, xlim=x_range)
462
  text(data_vc$LC1,data_vc$res_mod9,labels=data_vc$idx,pos=3)
463
  grid(lwd=0.5,col="black")
464
  title(paste("Testing stations residuals CAI vs LC1(forest)",date_selected,sep=" "))
465
  savePlot(paste("fig5_testing_residuals_fusion_CAI_LC1_",date_selected,out_prefix,".png", sep=""), type="png")
466
  
467
  ##Grass (LC3)  and residuals
468
  y_range<-range(c(data_vf$res_mod7,data_vc$res_mod9))
469
  x_range<-range(c(data_vf$LC3,data_vc$LC3))
470
  plot(data_vf$LC3,data_vf$res_mod7,ylab="Residuals", xlab="LC3 (%)", 
471
       ylim=y_range, xlim=x_range)
472
  text(data_vf$LC3,data_vf$res_mod7,labels=data_vf$idx,pos=3)
473
  grid(lwd=0.5,col="black")
474
  title(paste("Testing stations residuals CAI vs LC3 (grass)",date_selected,sep=" "))
475
  plot(data_vc$LC3,data_vc$res_mod9,ylab="Residuals", xlab="LC3 (%)", 
476
       ylim=y_range, xlim=x_range)
477
  text(data_vc$LC3,data_vc$res_mod9,labels=data_vc$idx,pos=3)
478
  grid(lwd=0.5,col="black")
479
  title(paste("Testing stations residuals CAI vs LC3(grass)",date_selected,sep=" "))
480
  savePlot(paste("fig6_testing_residuals_fusion_CAI_LC3_",date_selected,out_prefix,".png", sep=""), type="png")
481
  
482
  #LSTD_bias and residuals
483
  y_range<-range(c(data_vf$res_mod7,data_vc$res_mod9))
484
  x_range<-range(c(data_vf$LSTD_bias,data_vc$LSTD_bias))
485
  plot(data_vf$LSTD_bias,data_vf$res_mod7)
486
  text(data_vf$LSTD_bias,data_vf$res_mod7,labels=data_vf$idx,pos=3)
487
  grid(lwd=0.5,col="black")
488
  title(paste("Testing stations LST bias vs residuals",date_selected,sep=" "))
489
  plot(data_sf$LSTD_bias,data_sf$res_mod7)
490
  #text(data_sf$LSTD_bias,data_sf$res_mod7,labels=data_vf$idx,pos=3) # Also labels for training?
491
  grid(lwd=0.5,col="black")
492
  title(paste("Training stations LST bias vs residuals",date_selected,sep=" "))
493
  savePlot(paste("fig7_testing_training_residuals_fusion_LSTD_bias_",date_selected,out_prefix,".png", sep=""), type="png")
494
   
495
  #LSTD vs TMax and residuals
496
  y_range<-range(c(data_vf$TMax,data_vc$TMax))
497
  x_range<-range(c(data_vf$LSTD_bias,data_vc$LSTD_bias))
498
  plot(data_vf$LSTD_bias,data_vf$res_mod7,xlab="LST bias", ylab="Residuals")
499
  text(data_vf$LSTD_bias,data_vf$res_mod7,labels=data_vf$idx,pos=3)
500
  grid(lwd=0.5,col="black")
501
  title(paste("Testing stations LST bias vs fusion residuals",date_selected,sep=" "))
502
  plot((data_vf$LST-273.16),data_vf$TMax,xlab="LST", ylab="TMax (monthly tmax in C)")
503
  text((data_vf$LST-273.16),data_vf$TMax,labels=data_vf$idx,pos=3)
504
  abline(0,1) #takes intercept at 0 and slope as 1 so display 1:1 ine
505
  grid(lwd=0.5,col="black")
506
  title(paste("Testing stations LST vs TMax ",date_selected,sep=" "))
507
  savePlot(paste("fig8_testing_TMax_fusion_",date_selected,out_prefix,".png", sep=""), type="png")
508
  
509
  ##Elevation and residuals of temperature prediction
510
  diff_fc<-data_vf$pred_mod7-data_vc$pred_mod9
511
  
512
 
513
  y_range<-range(c(diff_fc))
514
  x_range<-range(c(data_vf$ELEV_SRTM,data_vc$ELEV_SRTM))
515
  plot(data_vf$ELEV_SRTM,diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", 
516
       ylim=y_range, xlim=x_range)
517
  text(data_vf$ELEV_SRTM,diff_fc,labels=data_vf$idx,pos=3)
518
  grid(lwd=0.5,col="black")
519
  title(paste("Testing stations residuals fusion vs Elevation",date_selected,sep=" "))
520
  
521
  brks<-c(0,500,1000,1500,2000,2500,4000)
522
  lab_brks<-1:6
523
  elev_rcstat<-cut(data_vf$ELEV_SRTM,breaks=brks,labels=lab_brks,right=F)
524
  y_range<-range(c(diff_fc))
525
  x_range<-range(c(elev_rcstat))
526
  plot(elev_rcstat,diff_fc, ylab="diff_cf", xlab="ELEV_SRTM (m) ", 
527
       ylim=y_range, xlim=x_range)
528
  text(elev_rcstat,diff_cf,labels=data_vf$idx,pos=3)
529
  grid(lwd=0.5,col="black")
530
  title(paste("Testing stations residuals fusion vs Elevation",date_selected,sep=" "))
531
  
532
  # Combine both training and testing
533
  pred_fus<-c(data_vf$pred_mod7,data_sf$pred_mod7)
534
  pred_cai<-c(data_vc$pred_mod9,data_sc$pred_mod9)
535
  elev_station<-c(data_vf$ELEV_SRTM,data_sf$ELEV_SRTM)
536
  diff_fc<-pred_fus-pred_cai
537
    
538
  elev_rcstat<-cut(elev_station,breaks=brks,labels=lab_brks,right=F)
539
  y_range<-range(diff_fc)
540
  x_range<-range(elev_station)
541
  plot(elev_station,diff_fc, ylab="diff_fc", xlab="ELEV_SRTM (m) ", 
542
       ylim=y_range, xlim=x_range)
543
  text(elev_rcstat,diff_fc,labels=data_vf$idx,pos=3)
544
  grid(lwd=0.5,col="black")
545
  title(paste("Testing stations residuals fusion vs Elevation",date_selected,sep=" "))
546
  
547
  #USING BOTH validation and training
548
  
549
  dev.off()
550
}
551
      
552
##Check...difference at diff stations...
553

    
554

    
555
#Extract the training and testing information for the given date...
556
data_sf<-gam_fus$gam_fus_mod[[k]]$data_s #object for the first date...20100103                  
557
data_vf<-gam_fus$gam_fus_mod[[k]]$data_v #object for the first date...20100103                  
558
data_sc<-gam_cai$gam_CAI_mod[[k]]$data_s #object for the first date...20100103                  
559
data_vc<-gam_cai$gam_CAI_mod[[k]]$data_v #object for the first date...20100103                  
560

    
561
#Join information extracted using the function previously
562
id_selected<-intersect(data_v_resf$id,data_vf$id) #Match station using their official IDSs
563
pos<-match(id_selected,data_v_resf$id)
564
tmp<-as.data.frame(data_v_resf[pos,c("id","idx","mae","c1","c2","c3")])
565
tmp<-tmp[,c("id","idx","mae","c1","c2","c3")]
566
data_vf<-merge(data_vf,tmp,by="id")
567
id_selected<-intersect(data_v_resc$id,data_vc$id) #Match station using their official IDSs
568
pos<-match(id_selected,data_v_resc$id)
569
tmp<-as.data.frame(data_v_resc[pos,c("id","idx","mae","c1","c2","c3")])
570
tmp<-tmp[,c("id","idx","mae","c1","c2","c3")]
571
data_vc<-merge(data_vc,tmp,by="id")
572
#Turn the data frame back into a spdf
573
coords<- data_vf[,c('x_OR83M','y_OR83M')]
574
coordinates(data_vf)<-coords
575
proj4string(data_vf)<-proj_str  #Need to assign coordinates...
576
coords<- data_vc[,c('x_OR83M','y_OR83M')]
577
coordinates(data_vc)<-coords
578
proj4string(data_vc)<-proj_str  #Need to assign coordinates...
579

    
580
###################################################
581
############## RESIDUALS BY TIME!!! ##############
582

    
583
#tab_resmod9
584
for (i in 1:nrow(tab_resmod9f)){
585
  date<-strptime(tab_resmod9f$date[i], "%Y%m%d")   # interpolation date being processed, converting the string using specific format
586
  month<-as.integer(strftime(date, "%m"))
587
  tab_resmod9f$month[i]<-month
588
}
589

    
590
mae_function<-function(res){mae<-mean(abs(res),na.rm=T)}
591
tab_test<-melt(tab_resmod9f,
592
               measure=c("res_mod7","x_OR83M","y_OR83M"),
593
               id=c("id","month"),
594
               na.rm=F)
595
tab_test_cast<-cast(data=tab_test,formula=id~month~variable,mean)
596
table_id_month<-tab_test_cast[,,1]
597
tab_month_cast<-cast(data=tab_test,formula=month~variable,mean)
598
tab_month_cast<-cast(data=tab_test,formula=month~variable,mae_function)
599
X11()
600
barplot(tab_month_cast$res_mod7,
601
        names.arg=1:12,cex.names=0.8,   #names of the teleconnections indices and size of fonts of axis labes
602
        xlab="Month",       # font.lab is 2 to make the font bold
603
        ylab="MAE",font.lab=2)
604

    
605
savePlot(paste("fig9_mae_fusion_per_season_",date_selected,out_prefix,".png", sep=""), type="png")
606

    
607
plot(table_id_month[55,])
608
plot(table_id_month[5,])
609

    
610
#tab_resmod9c
611

    
612
for (i in 1:nrow(tab_resmod9c)){
613
  date<-strptime(tab_resmod9c$date[i], "%Y%m%d")   # interpolation date being processed, converting the string using specific format
614
  month<-as.integer(strftime(date, "%m"))
615
  tab_resmod9c$month[i]<-month
616
}
617

    
618
mae_function<-function(res){mae<-mean(abs(res),na.rm=T)}
619
tab_test<-melt(tab_resmod9c,
620
               measure=c("res_mod9","x_OR83M","y_OR83M"),
621
               id=c("id","month"),
622
               na.rm=F)
623
tab_test_cast<-cast(data=tab_test,formula=id~month~variable,mean)
624
table_id_month_cai<-tab_test_cast[,,1]
625
tab_month_cast_cai<-cast(data=tab_test,formula=month~variable,mean)
626
tab_month_cast_cai<-cast(data=tab_test,formula=month~variable,mae_function)
627

    
628
barplot(tab_month_cast_cai$res_mod9,
629
    names.arg=1:12,cex.names=0.8,   #names of the teleconnections indices and size of fonts of axis labes
630
    xlab="Month",       # font.lab is 2 to make the font bold
631
    ylab="MAE",font.lab=2)
632
grid(nx=12,ny=10)    
633

    
634
savePlot(paste("fig10_mae_cai_per_season_",date_selected,out_prefix,".png", sep=""), type="png")
635

    
636
plot(table_id_month_cai[55,])
637
plot(table_id_month_cai[5,])
638

    
639
###### 
640
overlay(data_v_resf,diff_r)
641
plot(avg_LC_rec)
642
#Wihtout setting range
643
s_range<-c(-12,18)
644
#col_breaks <- pretty(s_range, n=50)
645
#lab_breaks <- pretty(s_range, n=5)
646
col_breaks<-49
647
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
648
lab_breaks <- pretty(s_range, n=5)  
649
X11(width=18,height=12)
650
par(mfrow=c(3,3))
651
mod_name<-paste("mod",1:8, sep="")
652
rname<-c("FUS_kr",mod_name)
653
for (k in 1:length(lf_fus1a)){
654
  fus1a_r<-raster(rast_fus1a,k)
655
  plot(fus1a_r, breaks=col_breaks, col=temp_colors(col_breaks-1),   
656
       axis=list(at=lab_breaks, labels=lab_breaks),main=rname[k])
657
}
658

    
659
### Wihtout setting range
660
s_range<-c(-12,23)
661
#col_breaks <- pretty(s_range, n=50)
662
#lab_breaks <- pretty(s_range, n=5)
663
col_breaks<-49
664
temp_colors <- colorRampPalette(c('blue', 'white', 'red'))
665
lab_breaks <- pretty(s_range, n=5)  
666
X11(width=18,height=12)
667
par(mfrow=c(3,3))
668
mod_name<-paste("mod",1:8, sep="")
669
rname<-c("FUS_kr",mod_name)
670
for (k in 1:length(lf_fus1s)){
671
  fus1s_r<-raster(rast_fus1s,k)
672
  plot(fus1s_r, breaks=col_breaks, col=temp_colors(col_breaks-1),   
673
       axis=list(at=lab_breaks, labels=lab_breaks),main=rname[k])
674
}
675
                 
676
############### NOW USE RESHAPE TO CREATE TABLE....##########
677
# DO A PCA HERE...also look at the difference between prediction at stations...
678
                 
679
var_pat<-glob2rx("*2010*") #Search for files in relation to fusion
680
var<-match("*2010*",names(data_v_resf)) #Search for files in relation to fusion                  
681
xp<-data_v_resf[,names(data_v_resf)[10:374]]      # subsetting the original training data, note that that this is a "SpatialPointsDataFrame"
682
                 
683
#xp<-data_s[,var]      # subsetting the original training data, note that that this is a "SpatialPointsDataFrame"
684
xp<-as.data.frame(xp)
685
dropsc<-c("x_OR83M","y_OR83M")  #columns to be removed
686
xp<-xp[,!(names(xp) %in% dropsc)]  # dropping columns
687
                 
688
X<-as.matrix(na.omit(xp))
689
                 
690
PCA9var<-prcomp(~.,data=xp, retx = TRUE, center= TRUE, scale = TRUE, na.action=na.omit)
691
E<-matrix()
692
E<-PCA9var$rotation    #E are the eigenvectors of the standardized PCA base on xp data.frame
693
Xs<-scale(X)           #Use scale to standardize the original data matrix (center on mean and divide by standard deviation)
694
Xpc<- Xs %*% E          #Rotate the original standardized matrix Xs by the eigenvectors from the standardized PCA
695
plot(PCA9var)
696
#plot(PCA9var$scores)
697
loadings<-cor(X, Xpc)   #Correlation between the original variables and the principal components...
698
loadings<-as.data.frame(loadings)
699
#quartz(width=6, height=6)
700
plot(PC2~PC1, xlab= "PC1", ylab= "PC2", xlim=c(-1, 1), ylim=c(-1,1), pch =16, width=1, 
701
              main= paste("This is PCA for ",date_selected, sep=""), height=1,asp=1,data=loadings) #Add aspect options to get 
702
axis(1,pos=0)
703
axis(2,pos=0)
704
text(loadings$PC1,loadings$PC2,rownames(loadings), adj = c(0,0),offset=2, col="red",cex=1.2)
705
draw.circle(0,0,radius=1)
706
                 
707
#DO PCA ON SELECTED DATE...
708

    
(33-33/37)